全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
《几何原本》成书于公元前三百年左右,全书十三卷,是欧几里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。全书章节安排严谨,由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,《几何原本》被翻译成世界上几乎所有的文字,对人们理性推演能力的影响,即对人的科学思想的影响深刻且巨大。
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问
《几何原本(建立空间秩序 久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并 次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年 个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
本书从外各级数学竞赛中精选提炼出百余道具有典型性的平面几何试题,分为十种题型,各题型由易到难分为A,B,C三类。每道题都有多种解法。在解题方法的使用上,更注重于常规的平面几何方法,每道题都有作者的解法,突出了“新颖”一词。本书以大量的具体的事例说明:可以采用常规的而又灵活的方法,简洁地解决平面几何难题,有利于拓展读者的视野,开启读者的思维,扎实地训练读者的基本功。 本书适合于的初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也适合于平面几何爱好者使用。
“数学文化小丛书”是“十一五”国家重点图书出版规划项目之一,该丛书精选对人类文明发展起过重要作用、在深化人类对世界的认识或推动人类对世界的改造方面有某种里程碑意义的主题,深入浅出地介绍数学文化的丰富内涵、数学发展史中的一些重要篇章以及一些数学家的历史功绩和品质等内容,适于包括中学生在内的读者阅读。 本书为“数学文化小丛书”之《并不神秘的非欧几何》。
《力学及其发展的批判历史概论》初版于1883年,是一部关于力学相关理论和历史发展以及科学认识论问题的经典科学著作,亦是一部在物理学史上具有划时代意义的著作。爱因斯坦称之为真正的著作之一,并且是科学历史著作的典范。 《力学及其发展的批判历史概论》中,作者详细论述了经典力学的基本观点和发展线索,充分肯定了牛顿及其后继者的历史功绩,盛赞了牛顿《自然哲学的数学原理》表述的明晰性。同时,作者主要从哲学(怀疑的经验论)和逻辑的角度出发,系统地批判了经典力学的基本概念和基本原理。
本书是《分形》的第2版,版在1995年8月由清华大学出版社出版。本书以自然界中普遍存在的非平衡非线性复杂系统中自发形成的各种时空有序状态(或结构)为研究对象,介绍了分形理论的基本概念、数学基础和研究方法,及其在凝聚态物理学、材料科学、化学、生物学、医学、地震学、经济学等学科中的应用。 本书内容丰富、生动形象,并附有适量的计算机模拟程序,可作为对非平衡非线性研究感兴趣的各学科研究工作者学习分形理论的入门书,也可作为大学本科生和研究生学习分形理论的教材和参考书。
本书是点集拓扑学方面的一本经典著作,全书共十章,内容为:拓扑空间、积空间、仿紧空间、紧空间、一致空间、复形和扩张子、逆极限和展开定理、Arhangelskii空间、商空间和映射空间、可数可乘的空间族.正文前的绪论简要地叙述了阅读本书所需的集合论的基本知识.书中有大量的例题和习题,有益于加强基本训练。
《生物无机化学导论(第3版)》根据当今生物无机化学的研究热点和国内外报道的资料以及作者的科研成果编著而成。全书分为绪论、重要的生物配体、金属配合物与核酸的相互作用、生物无机化学体系中的配位化学原理、氧载体、生物氧化还原反应中的金属蛋白和金属酶、固氮作用及其化学模拟、光合作用及其化学模拟、催化水解反应的金属酶、生物体中的碱金属和碱土金属及其跨膜运送、环境生物无机化学、近代结构分析方法在生物无机化学中的应用以及应用生物无机化学的若干研究领域共13章,是一部比较系统的、具有中国特色的生物无机化学教材和教学参考书。 《生物无机化学导论(第3版)》可作为高等院校无机化学、化学生物学、生物化学、药物化学、环境化学等专业高年级本科生、研究生的教材,也可供相关领域科研、技术人员参考使用。
本书是在一系列讲演的基础上扩展而成的,扼要介绍了离散几何领域中的一些问题和研究方向,如Borsuk猜想,Hadwiger猜想,Kepler猜想,Minkowski猜想,堆积密度,堆积中的深洞,覆盖密度等。 本书着重突出思想背景,力求直观,具有大学数学专业修养的人都能看懂。
本书是由国家自然科学基金委员会数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》之一。 本书是俄罗斯莫斯科大学经典数学教材之一,是微分几何教程的简明阐述,在大学数学系两个学期中讲授。内容包含:一般拓扑,非线性坐标系,光滑流形的理论,曲线论和曲面论,变换群,张量分析和黎曼几何,积分法和同调论,曲面的基本群,黎曼几何中的变分原理。叙述中用大量的例子说明并附有习题,常有补充的材料。 本书适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
《几何原本》成书于公元前三百年左右,全书十三卷,是欧几里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。全书章节安排严谨,由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,《几何原本》被翻译成世界上几乎所有的文字,对人们理性推演能力的影响,即对人的科学思想的影响深刻且巨大。
本书是在王敬庚、傅若男编著的《空间解析几何》的基础上修订而成的。与前一个版本比较,主要改写了第四章关于一般二次曲线(面)的内容,并且把原来的附录改写扩充成第五章平面仿射变换和等距变换。 空间解析几何是数学系一年级学生的一门基础课,它为学生学习后继的数学和物理课程提供必要的基础知识。同时,它本身的内容对解决某些实际问题也很有用。 本书包括解析几何产生的一个简单历史概述以及五章,书末附有部分习题的答案。 让学生知道一点有关一门课程的创立历史,有助于学生掌握该课程的基本思想和它在整个数学中所处的地位。为此本书将解析几何产生的历史概述放在最前面供学生阅读。 章是向量代数。在本章中暂不引进坐标系,目的是为了让学生更好地掌握向量本身的运算。强调向量的各种运算的几何意义和在几何中的
《几何原本》共有十三卷,其中卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形面积相等的条件;第二卷讲如何把三角形变成面积相等的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术的理论;最后讲述立体几何的内容。从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了
代数几何是数学中的一个重要分支,外很多著名的数学家都从事过对它的研究。本书从一道IM0试题的解法谈起,详细介绍了代数几何中的贝祖定理。全书共分五章,分别为:一道背景深刻的IM0试题、多项式的简单预备知识、代数几何中的贝祖定理的简单情形、射影空间中的交、代数几何、肖刚论代数几何。 本书可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
《伯恩斯坦多项式与贝齐尔曲面--从一道全国高中数学联赛试题谈起》由佩捷、施雨辰编著,《伯恩斯坦多项式与贝齐尔曲面--从一道全国高中数学联赛试题谈起》从一道全国高中数学联赛试题谈起,详细介绍了伯恩斯坦多项式和贝齐尔曲线及曲面的相关知识,全书共分2章,分别为:章Bernstein多项式与Bezier曲线;第2章Bern—stein多项式和保形逼近,本书适用于数学竞赛选手、教练员及广大数学爱好者研读。
《数学解题与研究丛书:平面解析几何》是一部高中数学教学参考用书,包括平面解析几何的文章、试题共40篇,系统、详尽地阐述了高中数学解题技巧,有理论、有实践,《数学解题与研究丛书:平面解析几何》注重科学性、系统性和趣味性,每篇文章各自独立成文,所以《数学解题与研究丛书:平面解析几何》可系统性地研读,也可有选择性地阅读.《数学解题与研究丛书:平面解析几何》可作为高三复习备考用书,也可供中学、大学师生及初等数学爱好者研读,或作为高中数学竞赛辅导资料和师范大学数学教材教法方面的教材。
计算几何作为计算机科学的一个分支,本书对其新发展和研究工作进行了综述性的介绍。论述了KDTIM理论的内涵;通过对计算几何中的一些问题的研究,提出一些新的理论与算法;将计算几何的理论方法应用于空间数据挖掘中,用计算几何中的理论和方法解决知识发现中的一些问题。 本书适合从事计算几何、数据挖掘等计算机科学相关领域的工作人员阅读。