基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
本书提出了对二阶平稳过程建模理论的论述,对于工程和应用科学也具有重要意义。关于平稳过程的处理在全书开头,这是一个有悠久历史的基础性问题,始于上世纪40年代柯尔莫戈洛夫、维纳等的工作。通过现代数字计算机,关于滤波与平稳随机信号与系统建模也得到了研究和解决,这始于上世纪60年代早期卡尔曼的基础性工作。本书提供了基于希尔伯特空间几何学的逻辑一致的思想主题,以及坐标的自由思想。在这个框架中,随机状态空间和状态空间模型的概念基于对相关信号的过去和未来的流动条件独立的概念,从根本上得到了统一。这本书涵盖了30多年的研究工作,是极有价值的文献,包括随机建模、估计、系统辨识和时间序列分析。它还提供了随机系统理论结构的数学算法工具。
《复杂曲面数字化制造的几何学理论和方法》系统地总结了作者丁汉,朱利民在复杂曲面数字化制造基础理论方面的研究成果。全书共7章,~4章为几何学基础,沿着曲线、曲面论→曲面上的几何学→高维微分几何→Lie群、Lie代数的线路循序渐进地介绍了现代微分几何和运动学的基础理论、内在联系及统一分析方法,并结合应用穿插介绍了一些外的成果。第5~7章以微分几何和化为工具,介绍了作者提出的曲面测量、加工和夹持定位的新原理和新方法,具体内容包括:点一曲面法向误差函数的可微性条件及其二阶导数的解析计算方法,散乱点云曲面逼近的统一方法体系,回转刀具扫掠包络面的解析表达、局部重建与整体形状控制原理,自由曲面线接触和高阶点接触数控加工刀位规划理论和方法,刀具全局可达方向锥的GPU计算方法,夹持完全约束性判别和夹具定位误差
《21世纪普通高等院校土木工程和建筑类专业教材:画法几何》是普通高等院校土木工程和建筑类专业教材。主要内容有正投影图,包括点、直线、平面、直线与平面、曲线、曲面、投影变换、平面与立体相交、直线与立体相交和两立体相交;轴测投影;标高投影;阴影和透视投影等。 《21世纪普通高等院校土木工程和建筑类专业教材:画法几何》按照由浅入深、循序渐进的原则来编写,说理清楚,重点突出,图文并茂,通俗易懂。通过学习,可逐步建立和加强学生的图示、图解能力和空间思维能力。与《21世纪普通高等院校土木工程和建筑类专业教材:画法几何》配合使用的《画法几何习题集》由同济大学出版社同时出版。为了帮助广大学生学好“画法几何及工程制图”课程,同济大学出版社还出版了《画法几何解题指导》,可供学生学习、解题时参考
《画法几何解题指导/高等院校教学辅助读物》是根据*高等学校工程制图教学指导委员会制定的《高等学校工程制图课程教学基本要求》,在参考了国内外相关院校该课程教学实践的基础上编写而成的。内容按教学顺序编排,包括:点,直线,平面,直线与平面及两平面间的相互关系,点、直线、平面的综合题,投影变换,曲线、曲面,立体的投影及其表面上的点线,平面与立体截交,直线与立体贯穿,两立体相贯,立体的表面展开,轴测投影与阴影。共十三章。每章均附有例题,以启发学生的空间思维,培养其正确的解题思路。 本书可供理工科高等院校(包括电大、职大、函大及网络学院等)与画法几何相关的学生使用,也可供中等专科学校制图教师教学时参考,还可给工程技术人员在图解空间几何时提供帮助。
本书旨在帮助读者看到群、 认识群、 验证群, 从而理解群的实质。 本书通过大量的图像和直观解释来介绍群论。 本书的主要内容有: 群是什么、 群看起来像什么、 为什么学习群、 群的代数定义、 五个群族、 子群、 积与商、 同态的力量、 西罗定理、 伽罗瓦理论。 每章*后一节为习题, 书后附有部分习题答案。 本书适合抽象代数 ( 近世代数) 课程的学生和教师, 也适合那些 接触群论并需要在较短时间内理解群论的读者。
《欧几里得原理十三本书》是当代最流行的标准英译本著作,本书是欧几里得数学思想研究的历史总结,每章节都作了详细的注释,包括每个定义、假设命题等都进行分析和讨论,反驳与支持,推断和解读。全套书共三册,主要介绍了欧几里得的古典数学思想,包含圆,直线,三角形,锥体,圆柱体等元素,涵盖中世纪文艺复习时期一些评论家的主要观点,对其进行数学解读、分析与评论。此外,本书也对欧几里得历史笔记中的文字和语言问题作了非常详细的说明与介绍,堪称数学思想领域的开山巨作。
《数学思想方法(第2版)》共十三章,分为三个部分。主要介绍数学思想方法的两个源头、数学思想方法的几次突破、数学的真理性以及现代数学的发展趋势.对于了解现代数学观、确立现代数学教学观颇有帮助。中篇分别对数学教学中常用的抽象与概括、猜想与反驳、演绎与化归、计算与算法、应用与建模,以及分类、数形结合、特殊化等数学思想方法进行了比较详细的介绍,旨在让学员能较好地掌握这些重要的数学思想方法。下篇主要阐述了数学思想方法与素质教育之关系、数学思想方法教学的主要阶段及其原则。
本习题集内容有:正投影中点,直线,平面,投影变换,点、线、面与投影变换测验作业;平面立体、曲线曲面、曲面立体,平面、直线与立体相交,两立体相交,轴测投影,平面立体、曲面立体、立体与立体相交测验作业;标高投影,阴影,透视,透视测验作业,并附有部分习题解答。 本习题集供普通高等院校中,土木工程和建筑类各专业的“画法几何及工程制图”以及“画法几何及阴影、透视”课程使用。其中,正投影和轴测投影部分也可供其他工程专业选用。该习题集是同济大学出版社同时出版的21世纪高等院校土木建筑类专业教材《画法几何》的配套书。 为了帮助广大学生学好“画法几何及工程制图”课程,同济大学出版社还出版了《画法几何解题指导》,可供学生学习、解题时参考。
代数几何是数学中的一个重要分支,国内外很多著名的数学家都从事过对它的研究。本书从一道im0试题的解法谈起,详细介绍了代数几何中的贝祖定理。全书共分五章,分别为:一道背景深刻的im0试题、多项式的简单预备知识、代数几何中的贝祖定理的简单情形、射影空间中的交、代数几何、肖刚论代数几何。 本书可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
左铨如、素月的《初等几何研究》是为培养2l世纪的中学数学教师服务的,所以它不局限于现行中学数学教材中的几何部分,还考虑到知识不断更新和中学教材变革的需要,因此,本书突破了传统体系,介绍数学结构的观点。现代公理化的方法,分析比较了几种几何公理系统,详细地介绍了张景中公理系统,让读者从整体上对初等几何研究的对象、方法和它的基础地位有一个大概的了解。本书是师范院校数学专业的必修课教材,也可为中学数学教师的参考书。
本习题集主要内容有点、线、面的投影,线面关系,投影变换,曲线曲面,立体的投影,平碸立体截交,直线和立体相交,两曲面体的相交,立体的表面展开和轴测投影等章的题目。 本习题集的覆盖而广,适用于理工科高校中有画法几何课程的各专业选用。 本习题集与同济大学出版社出版的《画法几何简明教程》配套使用。也可以单独或与其他教材配合使用。
《欧几里得原理十三本书》是当代最流行的标准英译本著作,本书是欧几里得数学思想研究的历史总结,每章节都作了详细的注释,包括每个定义、假设命题等都进行分析和讨论,反驳与支持,推断和解读。全套书共三册,主要介绍了欧几里得的古典数学思想,包含圆,直线,三角形,锥体,圆柱体等元素,涵盖中世纪文艺复习时期一些评论家的主要观点,对其进行数学解读、分析与评论。此外,本书也对欧几里得历史笔记中的文字和语言问题作了非常详细的说明与介绍,堪称数学思想领域的开山巨作。
作者方运加以通俗易懂的语言阐述了坐标的概念,从一些简单的几何问题人手,讲述了利用坐标法分析问题与解决问题的基本方法,对比了坐标法、代数方法与几何方法在解题思路、方法的不同特点。在介绍一些基础性的以及若干较复杂但饶有趣味的问题在应用坐标法解题的过程中,使读者清楚地看到坐标概念是代数学与几何学结合的桥梁与一个学科分支――解析几何学――的产生和发展的必然性,并了解它成为强有力的数学工具的基本内涵。 《坐标法》是读者学习解析几何以及高等数学的一本启蒙书,它无论在学习与掌握坐标法还是在建立新的数学观念方面,以及对中学生的数学素养的提高,都会起到良好的作用。本书对大学、专科学校学生也有参考价值。
本书是按照《建筑工程施工质量验收统一标准》(GB 50300—2001)以及施工质量验收规范的要求和现场施工人员基本、实用的专业知识和施工现场的基本安全常识,用通俗易懂的语言进行编写的。 本书分施工篇、安全篇和建筑材料篇编写。施工篇主要介绍建筑工程各工种的施工质量要求和施工要点;安全篇主要介绍建筑施工安全常识和分析事故产生的原因及预防措施;建筑材料篇介绍建筑材料、半成品、成品的技术性能、质量要求和用途。同时,还附有建筑施工常用数据以便于查阅。 本书可作为建筑施工人员的培训教材,也可供施工技术人员参考使用。