平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的.《平面几何天天练(中卷·基础篇)(涉及圆)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(中卷·基础篇)(涉及圆)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
几何三大难题困扰了人类2000多年,让许多伟大的数学家为之辛勤地思考并耗费大量的精力,人类也在解决他们的过程中发展了新的数学。因此了解这些问题以及了解这些问题是如何解决的,对学数学的人和对数学感兴趣的中学生来说是很有意义的。本书以很少的篇幅,从历史的发展的角度展开,穿插了一些历史资料和生动的故事。另外作者设计了一系列的习题,让读者参与到问题的解决中去。本书自1969年出版以来,直到现在仍是一本很受读者欢迎的读物。本书适合对此感兴趣的大学生,中学教师,以及有较好代数和几何基础的中学生等阅读。
《数学与人文》丛书第三十四辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分4个栏目,包含了11篇文章。 专稿 栏目收录了丘成桐先生的 几何三讲:从古代到黎曼 。 中外数学大师的经历 栏目刊载了王作跃和郭金海的文章 陈省身、华罗庚和普林斯顿高等研究院 以及另一篇纪念、回忆文章 纪念John Tate 。 国际数学家的友好交往 栏目收录了丘成桐先生纪念John Coates教授的文章以及Coates教授的生平介绍、其儿子写的悼念文章和梁志斌博士对他的采访;栏目还登载了丘成桐先生的 祝贺Karen Uhlenbeck八十华诞 , 同时收录了Uhlenbeck教授的小传;栏目的最后一篇是悼念挪威数学家Selberg的文章。 数学家趣味 栏目收录了澳门大学数学系金小庆教授的文章 书法记 。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对
本书是作者在复旦大学数学系主讲 空间解析几何 课程20多年的结晶,全书共3章,*章,直线与平面;第二章,曲线与二次曲面;第三章,非欧几何,包括球面三角形、射影平面几何与双曲平面几何等内容. 书中许多定理和事实是重新证明过的,有些章节完全是作者自己编写的. 每章附有一定数量的习题,其中不少习题是复旦大学数学系 空间解析几何 课程的考题. 本书可作为综合大学数学和应用数学专业 空间解析几何 课程的教材,也可作为教师教学参考用书.
本书为三角形趣谈,全书共分10章,每章后配有练习题,书后附有习题参考答案。本书适合初、高中学生,初、高中数学竞赛选手及教练员使用,也可作为高等师范院校、教师进修学院数学专业开设的“竞赛数学”课教材及*、省级骨干教师培训班参考使用。
代数拓扑 同伦理论描述了同伦理论。它得以兴旺发展,应归功于W. Hurewicz1935年引进同伦群以及S. Eilenberg用同伦群引进关于映射扩张的障碍类。同伦理论包括同伦群 n(X),相对同伦群、上同伦群、谱序列以及障碍理论。我们还详细讨论了第1同伦群(也称为基本群) 1(X),它在同伦群中性质知道*多,与它有关的研究成果也*多。我们将展示近代微分几何中曲率与基本群相关的一些成果。同调群与同伦群都是拓扑不变量,也都是同伦不变量。他们是比点集拓扑中得拓扑不变量(如连通性、紧致性)更难、更复杂、更高档次的不变量。我们将给出用连通性、紧致性不能判断不同胚、不同伦,而用同调群或者同伦群却能判断不同胚、不同伦的种种具体实例。*后,还给出了球面 Sn的弱冠同伦群的结果。
本书是《数学与人文》丛书为纪念陈省身先生诞辰100 周年而出版的专辑。 书中*部分选登了历史上伟大的几何学家欧几里得、高斯、黎曼和陈省身的代表作,以显示几何学两千多年来基本思想的发展; 并介绍了索菲斯 李、嘉当、布拉施克等的生平和工作, 陈省身在继承了这些前辈们的成就基础上, 开创了整体微分几何的新时代。第二部分主要介绍陈省身的合作者, 以及他们的合作成果在如何影响现代几何学乃至代数学等领域的发展。第三和第四部分主要由陈省身的朋友、同事和学生们所写: 第三部分中的纪念文章, 反映了陈先生扎在中国传统文化中深深的根, 以及他致力于推进中国数学事业的发展, 关心、帮助年轻人的伟大人格; 该部分还介绍了国际数学联盟首次颁发陈省身奖章。第四部分适合数学家阅读, 包括陈省身数学工作的介绍, 纪念陈省身的自述文章和数学研究;*
本书是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它们既是当前十分活跃的研究领域,也是作者研究成果的领域之一,含有作者独到的见解。本书每章内都附有一定数量的习题,书末附有习题解答和提示,便于读者深入学习或自学。 本书可作为综合性大学、师范院校数学系与物理系高年级本科生和研究生的教材或教学参考书,也可
《卡拉比–丘流形和相关几何》是由2001年夏天norway,nordfjordeid讲述辛几何的讲义扩展而成。突出讲述calabi-yau是本书的*特点。部分讲述完整群和已校准子流形,强调特殊拉格朗日算符子流形和syz猜想;第二部分运用代数几何讲述calabi-yau流形和镜子对称。后一部分讲述紧hyperkahler流形,它具有的几何结果和calabi-yau流形有很大的关系。各部分之间过渡自然,衔接紧密紧密,是一部很好的教程。目次:黎曼完整群和已校准的几何;calabi-yau流形和镜子对称;紧hyperk?hler流形。 读者对象:数学专业的高年级本科生,研究生和科研人员。
《平面解析几何方法与研究(第3卷)》全面系统地介绍了欧氏平面解析几何的有关重要内容,是作者参考了多种有关论著并结合自己的教学经验整理而成的,《平面解析几何方法与研究(第3卷)》对进一步理解平面解析几何基本内容、拓宽知识面都有很大帮助,对于书中的难点和一般解析几何书中不常见到的内容作者都做了严谨而详细地论述,并配备了较多例题,每个例题都具有典型意义,是对正文的重要补充,这些例题对理解重要概念、掌握解析几何方法有重要作用,因此,《平面解析几何方法与研究(第3卷)》是一本有价值的数学教学参考书。
概型理论是代数几何的基础,在代数几何的经典领域不变理论和曲线模中有了较好的发展。将代数数论和代数几何有机的结合起来,实现了早期数论学者们的愿望。这种结合使得数论中的一些主要猜测得以证明。 本书旨在建立起经典代数几何基本教程和概型理论之间的桥梁。例子讲解详实,努力挖掘定义背后的深层次东西。练习加深读者对内容的理解。学习本书的起点低,了解交换代数和代数变量的基本知识即可。本书揭示了概型和其他几何观点,如流形理论的联系。了解这些观点对学习本书是相当有益的,虽然不是必要。目次:基本定义;例子;射影概型;经典结构;局部结构;概型和函子。
本书分为三角函数测角法,三角函数表,三角形的解法以及习题四部分。详细地介绍了平面三角的相关知识。本书适合平面几何爱好者及在中学师生阅读参考。
数的几何是数论的一个经典分支。本书给出它的基本结果和一些数论应用。基本结果包括凸体和格的性质,Minkowski和第二凸体定理,Minkowski-Hlawka容许格定理,Mahler列紧性定理,二次型的约化理论及堆砌与覆盖等;数论应用有四平方和定理及Hurwitz逼近定理等的证明。本书以大学理工科有关专业高年级学生和研究生为主要对象,也可供有关研究人员参考
本习题及解答是依据*批准印发的《普通高等院校工程图学课程教学基本要求》和近年来国家质量监督检验检疫总局发布的*标准,充分考虑了各专业的教学特点,并根据当前画法几何学教学改革的发展,结合编者多年工程实践及画法几何学教学的经验而编写的。 本习题及解答与化学工业出版社出版的教材《画法几何学》(周佳新主编)配套使用。 本习题及解答的章节分别与教材的章节对应。习题的选择本着由浅入深、由易到难的原则,以基本题为主,从不同角度训练读者的读图与制图能力,培养读者的空间想象能力和图形思维能力,为后续课程打基础。习题解答按步骤给出了解题的思路和方法供读者参考、实践。 本习题及解答可作为土木工程、道桥工程、城市地下空间工程、安全、测绘、环境工程、暖通、给排水、建筑学、园林、规划、环境设
本书是复流形的一大经典(全英文版),也是陈省身先生著名的著作之一。该书是1995年版复流形理论第2版的修订版。本书以作者在California大学的讲义和Canadian数学学会的研讨班为蓝本,全面地讲述复流形理论在代数几何、复函数理论、微分算子等理论中的重要作用。本书的*特点是复流形理论的微分几何方法是在S.-S.Chern著作的影响下发展起来的,作为第2版对该理论的引入和表示很完美,被众多数学界的学者、专家所引用,是学习Riemann几何的一本理想参考书。
本书是根据复旦大学的教材改编而成的。全书共分6章,主要介绍坐标系统、变换、机构运动的数学表示、曲线模型、曲面模型、共轭曲面等内容。 本书可供高等学校有关专业用作应用几何课程的教材,也可供从事应用数学工作以及计算机辅助设计和制造的科技工作者参考。
作者方运加以通俗易懂的语言阐述了坐标的概念,从一些简单的几何问题人手,讲述了利用坐标法分析问题与解决问题的基本方法,对比了坐标法、代数方法与几何方法在解题思路、方法的不同特点。在介绍一些基础性的以及若干较复杂但饶有趣味的问题在应用坐标法解题的过程中,使读者清楚地看到坐标概念是代数学与几何学结合的桥梁与一个学科分支——解析几何学——的产生和发展的必然性,并了解它成为强有力的数学工具的基本内涵。 《坐标法》是读者学习解析几何以及高等数学的一本启蒙书,它无论在学习与掌握坐标法还是在建立新的数学观念方面,以及对中学生的数学素养的提高,都会起到良好的作用。 本书对大学、专科学校学生也有参考价值。