《集论》共分十章。第壹章至第四章讨论集及其结合,集的势、型及序数,第五章讲集系,内容包括环、体、Borel集及Suslin集;第六章和第七章为点集论,而Borel集及Suslin集在此获得进一步的阐述;第八章为空间的映象;第九章是实函数,第十章是比较近代的材料,内容包括Baire条件及半单叶映象,书末有一个附录,其中所列也是较新材料,但不加证明,作为正文中有关部分的参考。
《近代数学史》从数学的定义、古代数学的遗产、17-18世纪各国数学发展概况、解析几何学、微积分、代数、数论、20世纪的数学、数学家小传等方面介绍了近代数学史。
本书由美国康奈尔大学Rick Durrett教授撰写,书中反映了过去半个多世纪概率论与过程的巨大发展,体现了概率论与其他学科深刻联系以及在工程、经济、金融等方面的应用,继承了美国在概率论教育实践中所积累的经验。本书选材恰当,编排合理,难度适中,兼顾理论与应用,契合当今研究生教学的实际情况,被美国多所高校选为研究生教材。 本书内容包括大数定律、中心极限定理、游动、鞅论、马氏链、遍历定理、布朗运动等。附录部分收录了所需的测度论知识。此书宜为概率统计专业研究生教材。对于学过概率论的学者而言,这也不失为一本出色的参考书。
本书讲解了离散数学问题求解中组合推理和组合建模的方法、思维和运用。主要涉及图论基本概念、覆盖和图着色、搜索算法和网络运算算法等图论知识和方法,以及基本的计数方法、生成函数计数模型、递推关系模型、容斥原理、Polya枚举公式等枚举方法及其应用。作者还介绍了如何用计算机科学地处理枚举,以及逐步受限游戏的理论及其在尼姆游戏中的应用,体现了组合数学的趣味性。本书内容丰富,简明易懂,适合作为高等院校数学专业和计算机专业高年级本科生及研究生的教材,也可供对组合数学有兴趣的相关人员阅读。
不确定理论是概率论、可信性理论、信赖性理论的统称,本书旨在介绍不确定理论的公理化框架,提供处理常见不确定性问题的数学工具.全书共分13章,内容包括测度与积分、概率论、可信性理论、信赖性理论、模糊理论、模糊理论、粗糙理论、粗糙理论、模糊粗糙理论、粗糙模糊理论、双重理论、双重模糊理论、双重粗糙理论.本书所选内容部分反映了不确定理论的研究成果、研究方法和研究动向,在理论体系和方法上均有所创新,构建了不确定理论研讨的平台.本书可作为应用数学、运筹学、管理科学、计算机科学、系统科学、信息科学与工程技术等专业高年级和研究生的,也可作为相关专业的教师和研究人员的参考书。