《华为数据之道》 《华为数据之道》 这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在优选170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 第一部分(~3章) 第1章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细
《深入浅出数据分析》以类似"章回小说”的活泼形式,生动地向读者展现出色的数据分析人员应知应会的技术:数据分析基本步骤、实验方法、优化方法、假设检验方法、贝叶斯统计方法、主观概率法、启发法、直方图法、回归法、误差处理、相关数据库、数据整理技巧;正文之后,意犹未尽地以三篇附录介绍数据分析十大要务、R工具及ToolPak工具,在充分展现目标知识以外,为读者搭建了走向深入研究的桥梁。
阅读本书可以学习使用Python对数据集进行操作、处理、清洗和规整。第3版针对Python3.10和pandas1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效地解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。 本书作者Wes McKinney是Python pandas项目的创始人。本书对Python数据科学工具的介绍既贴近实战又内容新颗,非常适合刚开始学习Python的数据分析师或刚开始学习数据科学和科学计算的Python程序员阅读。读者可以从GitHub获取数据文件和相关资料。 学完本书,你将能够: ·使用Jupyter notebook和IPython shell进行探索性计算。 ·掌握NumPy的基础功能和高级功能。 ·掌握pandas库中的数据分析工具。 ·使用灵活的工具对数据进行加载、清洗、转换、合并和重塑。 ·使用matplotlib进行信息可视化。 ·使用pandas的groupBy功能对数据集进行切片、切
Python是一门开源的计算机编程语言,凭借其易学、灵活等特点,得到了越来越多人的认可和青睐。金融科技日新月异,金融行业的数字化、科技化和智慧化快速推进,Python在金融领域有着很好的应用现状和前景。 本书在上一版的基础上进行了内容升级,持续聚焦Python在金融分析与风险管理的应用,第2版从原先的12章扩充至15章,并依次划分为基础篇(共5章)、中阶篇(共5章)以及高阶篇(共5章),基础篇结合金融场景演示了Python语言以及NumPy、pandas、Matplotlib、SciPy以及statsmodel等金融领域常用的第三方模块的编程方法;中阶篇通过Python编程结合金融实例,依次探讨利率、汇率、债券、股票、互换合约、期货合约等产品的定价、风险测度以及风险管控等内容;高阶篇则融合Python与金融案例,探究了期权的定价、希腊字母、动态对冲、隐含波动率、交易策略及其他延
本书通过大量案例研究介绍数据可视化的基础知识,以及如何利用数据创造出吸引人的、信息量大的、有说服力的故事,进而达到有效沟通的目的。具体内容包括:如何充分理解上下文,如何选择合适的图表,如何消除杂乱,如何聚焦受众的视线,如何像设计师一样思考,以及如何用数据讲故事。 本书适合所有需要用图表展示信息和数据的人士阅读。
商业分析有用吗?当然有用!商业分析是行走职场、创业启航的一项推荐技能。作者结合自己多年的工作经验,用生动的语言介绍如何用数据分析解决商业问题。本书分为6篇,共17章,其中第1篇是概念篇,讲述商业分析的基本概念;第2篇是基础篇,讲述如何用基础的分析方法评估企业经营状况;第3篇是进阶篇,讲述如何构建分析体系解决较复杂的问题;第4篇是高阶篇,讲述如何应对复杂的商业难题;第5篇是基础实践篇,通过案例讲述如何解决更复杂的商业问题;第6篇是高阶实践篇,通过案例讲述如何解决商业分析中的疑难杂症。本书的讲解思路是层层递进的,从简单场景到复杂场景,从基础的方法到复杂的方法。因此,无论读者是否有数据分析基础和经验,都建议从头开始阅读,这样可以一步步提升认知,更快地掌握商业分析的方法。
本书在前四版畅销书的基础上,根据SPSS 26.0软件升级的市场应用需求进行第5次升级修订。 本书结合具体的SPSS统计分析实例,图文并茂地介绍了近期新版本SPSS 26.0的各种统计分析方法,包括基本统计分析、参数与非参数检验、方美分析、相关分析、同归分析、名重响应分析、聚类分析、判别分析、因子分析、主成分分析、对应分析、时间序列模型、信度分析、生存分析和缺失值分析的原理和使用方法。全书注重内容的实用性,在译细介绍SPSS常用的提作功能基础上,通过一些综合应用案例(在医学、经济管理、自然科学和社会科学中的应用)来演示实际统计分析中SPSS的使用。 本书适用于SPSS软件17.0~26.0版本,作者录制了96个视频教学文件,读者可通过扫描各章节二维码阅读学习。本书可作为高校经济学、管理学、统计学、公共管理、社会学和卫生统计等专业学生学
无论是审计师还是会计师,在工作中都会遇到如何获取数据、分析数据的问题,甚至有时想制作一些自动化的工具或利用编程技巧来辅助完成重复性的工作。本书正是从审计师、会计师的实际工作场景出发,讲解IT审计的学习技巧、SQL基础与实战技巧、Python基础与Python实战技巧,以及数据可视化技巧等。
首席数据官(Chief Data Officer,CDO)是数字时代的产物,它在数字化转型的过程中,以及在转型成功后的数字经济中,都会起到关键作用。本书旨在建立一套相对完整的关于首席数据官的知识体系,帮助读者更好地参与数字时代的发展。 本书分为5篇。“第一篇 CDO概论”介绍CDO产生的背景、发展趋势、主要职责、推荐技能和工作路径等。“第二篇 管好数据”讲解CDO如何管理好数据,涉及数据战略、数据治理、数据制度、数据标准、数据架构、数据质量、数据安全、数据合规、数据建模、数据集成、数据存储、数据分析和挖掘、数据伦理、数据开放与共享等。“第三篇 做好转型”讲解CDO如何做好数字化转型。“第四篇 建好团队”讲解CDO如何构建、领导和考核数据团队。“第五篇 新技术、新模式、新业态”介绍一些与数据及CDO相关的新技术、新模式和新业态。 本书适
本书提供了学习大数据技术及架构的一站式解决方案,覆盖了大数据生态圈中的完整技术体系,包括数据采集、数据存储、分布式资源管理、数据计算、数据分析、任务调度、数据检索、大数据底层基础技术和大数据集群安装与管理。 本书还介绍了多个企业级大数据应用案例(包括海量数据采集、“双十一”数据大屏、海量数据全文搜索系统等)和大数据平台架构案例(包括离线数据仓库架构、实时数据仓库架构、批流一体化数据仓库架构、数据中台架构、直播大数据平台架构、电商大数据平台架构等),可以帮助读者从全局角度理解大数据。 在本书中,技术内容基本上都是从零讲起的,结合原理和架构,以“图解+实战”的形式帮助读者轻松理解复杂的知识。 本书适合对大数据感兴趣的开发人员。无论读者是否接触过大数据开发,只要具备一定的Java开发
全书分为 8 章, 主要内容如下:第1章介绍学术论文插图绘制的规范性和基本原则以及学术论文插图的配色基础;第2章介绍绘制学术论文插图的主要工具,并重点介绍 Matplotlib、Seaborn、ProPlot 以及 SciencePlots 工具包的语法及其重要特征;第3章介绍学术论文中常见的单变量图及其绘制方法,包括直方图、密度图、Q-Q 图等;第4章介绍学术论文中常见的双变量图及其绘制方法, 具体包括误差线、柱形图、箱线图、相关性散 点图以及矩阵热力图等;第5 章介绍学术论文中常见的多变量图及其绘制方法,包括等高线图、点图系列、 三元相图、 3D 图系列以及 RadViz 图等;第 6 章介绍学术论文中常见的空间数据型图及其绘制方法,包括分 级统计地图、连接线地图、等值线地图以及子地图等;第 7 章介绍学术论文中常见的可视化图及其绘制方法,包括配对图系列、韦恩图、泰勒图
《零基础学Oracle》是针对零基础编程学习者研发的Oracle入门教程。从初学者角度出发,通过通俗易懂的语言、流行有趣的实例,详细地介绍了使用Oracle 11g进行数据管理的各方面技术。全书共分16章,包括Oracle 11g概述、Oracle管理工具、SQL*Plus命令、数据表操作、SQL查询基础、SQL查询进阶、子查询及常用系统函数、PL/SQL语言编程、游标以及企业人事管理系统等。书中所有知识都结合具体实例进行讲解,涉及的程序代码给出了详细的注释,可以使读者轻松领会Oracle 11g数据库管理的精髓,快速提高数据库管理技能。本书通过大量实例及一个完整项目案例,帮助读者更好地巩固所学知识,提升能力;随书附赠的《小白实战手册》中给出了3个实用数据库、数据表的创建、操作和系统维护流程,力求让学习者能学以致用,真正获得数据库管理经验;附赠的光盘中给出了视频讲解
本书以数据思维为主题,以数据分析全流程为主线,融合了编程语言、统计学基础及案例分析等内容,全书分为4篇,囊括了数据思维的概念和培养方法、数据来源及体系建设、数据分析三大思维方式及用户流失、用户转化实战等共11章的内容。本书囊括了数据分析中常用的分析方法,包括经典的海盗(AARRR)模型、麦肯锡的MECE模型、逻辑树、漏斗分析、路径分析、对比分析、A/B试验、RFM模型、K-Means算法、5W2H等分析方法,还包括各类方法的实践案例及Python实操项目。可以说本书是数据分析方法论与统计学知识、编程语言及应用案例的完美结合。
本书稿兼具专业性、前沿性与可读性, 可作为广大从业者、研究者、投资者等的重要学习参考。书稿采用问答方式, 图文并茂, 围绕数据要素的科学内涵、政策法规、技术路径、流通交易、实践探索、国际比较和远景蓝图七个主要方面, 设置100个问题, 选取广大读者关心的、有实践指导性的数据要素相关经济、法律、技术、业界实践等前沿内容进行重点介绍与解读, 如“数据权属界定难在什么地方”“‘数据可用不可见, 使用可控可计量’如何通过技术实现”“《个人信息保护法》禁止的‘大数据杀熟’怎么判定”“数据应该如何估值与定价”“如何探索构建现代数据产权制度”, 等等, 助力广大读者理解数据要素、用好数据要素, 进而切实发挥数据要素价值。
本书基于作者十多年的工作经验和分享,全面覆盖了从SQL基础查询到高级分析、从数据库设计到查询优化等内容,通过循序渐进的方式和简单易懂的案例分析,透彻讲解了每个SQL知识点。本书采用了近期新的SQL:2019标准,紧跟产业发展趋势,帮助读者解锁最前沿的SQL特性,同时提供了5种主流数据库的实现和差异。最后,本书还介绍了近期新SQL标准对文档存储(JSON)、复杂事件处理(MATCH_RECOGNIZE)、多维数组(SQL/MDA)以及图形存储(SQL/PGQ)的支持。
为什么花更少的钱买更偏远的房子不一定划算? 为什么得分最多的运动员不一定是好运动员? 为什么癌症发病率上升竟可能是一件好事? 泰勒主义、绩效管理、科学管理、关键绩效指标等理论都建立在同一个假设之上:如果你考核员工并提供激励,你就会得到理想的结果。但事实真的是这样吗? 我们使用衡量指标来了解世界上许多重要的事:教育和医疗系统是否高效,一个国家是否比另一个国家更富裕,哪个城市的生活质量更高……在这本书中,作者分享了许多选用错误的衡量指标,进而带来糟糕结果的案例,展示了衡量指标如何影响教育、医疗、商业,甚至城市发展。 为什么人们总是测量错误的数据,而忽视重要的指标设定?这本启发性的书提醒我们,并非所有重要的东西都计算得清楚,也并非所有计算得清楚的东西都重要。被各种量化指标裹挟的我们,要
ChatGPT能够辅助用户完成从数据收集、预处理、分析到报告撰写的全过程,大大降低了数据分析的门槛。本书共分为 12 章,内容包括ChatGPT 的注册与登录、提示词的设计、GPTs、数据的收集与预处理、特征工程、各类数据分析方法(包括对比分析、分组分析、回归分析、分类分析和聚类分析等)、数据可视化,以及如何利用 ChatGPT 撰写数据分析报告等。每章都提供了丰富的示例和实用技巧,旨在帮助读者掌握利用ChatGPT 进行数据分析的方法,提高数据处理和分析的效率。本书适合数据分析师、市场研究人员、高校师生、科研人员以及任何对数据分析感兴趣的读者。通过阅读本书,读者不仅能学习到如何使用 ChatGPT 进行数据分析,还能深刻理解数据分析的核心概念和应用场景,从而在实践中更加游刃有余。
通过大数据手段搜集挖掘情报信息,已成为国际上专业情报领域的重要手段。本书选取网络舆论、社会事件、开源人物、用户行为、科技动态、视频图像、公共卫生等多个具有代表性的情报大数据领域,围绕大数据背景下情报的采集、存储、管理和分析等方面,从技术实现途径进行全方位详解,以帮助读者学习掌握在海量数据中提炼出髙价值情报的方法。 本书适合高等学校数据科学与大数据、计算机、软件工程、人工智能等本专科教学使用,也适合作为对情报大数据感兴趣的研究生、工程师和研究人员的学习资料。
了解数据结构与算法是透彻理解计算机科学的前提。随着Python日益广泛的应用,Python程序员需要实现与传统的面向对象编程语言相似的数据结构与算法。本书是用Python描述数据结构与算法的开山之作,汇聚了作者多年的实战经验,向读者透彻讲解在Python环境下,如何通过一系列存储机制有效地实现各类算法。通过本书,读者将深刻理解Python数据结构、递归、搜索、排序、树与图的应用,等等。这一版重写了书中的示例代码,并对诸多内容做了修正。
数据工作者在处理数据时,与其说像是手忙脚乱的猴子,不如说更像是神奇的魔法师。数据很少会以“准备就绪”的形态进入我们的世界,通常需要经过几个小时的清理、过滤和重塑才能被使用。Power Query可以加速整个数据处理过程,有时甚至只需简单地单击几个按钮就能完成。Excel用户可以仅仅通过学习Power Query配合Excel公式来导入数据、清理数据和转换数据,为后续分析数据做好准备,整个过程几乎零代码。我们相信Power Query将改变Excel用户处理数据的方式。如果你正在使用Excel,其实已经拥有Power Query,自Excel2016版本起,Power Query已内置到Excel中。这本书正是教你如何通过Power Query使用更多专业的数据处理技巧的指南。
本书系统论述了图数据库的理论知识与行业应用实践。本书分为理论篇和实践篇,共15章。其中,理论篇包括第1~8章,由浅入深地介绍了图数据库的概念和底层技术原理,涵盖主流图数据库的内核原理与架构设计、图查询语言、图算法、图数据库客户端编程、图数据库服务端编程、图可视化、图数据库选型等内容;实践篇包括第9~15章,介绍了图数据库的行业应用案例,涵盖知识图谱、金融、泛政府、零售、制造业供应链管理、企业资产管理、生命科学等内容,通过这些案例,进一步启发读者深入思考和挖掘潜在的应用场景。针对行业案例,本书免费提供详尽的源代码,以便读者动手实践。本书适合数据库应用开发人员、数据库管理人员、数据科学家以及负责数据库选型的技术专家阅读,也适合高等院校数据库专业的高年级本科生和研究生参考。
数据是自然和生命的一种表现形式。古人结绳计数、勒石记事,客观地记录了人类的成长和社会的发展。今天,大数据时代,数据洪流激荡着时代的发展。本书穿越数据的前世今生,回顾了数字和数据的基本演进过程,从数学家借助概率发现数据分布的秘密到量化看世界引领大数据思维;从虚拟现实、数据孪生、数据世界的规则深入探究元宇宙的数据本质,展现即将跟随元宇宙迸发的数据活力。本书能给读者以启发和参考,一起走向数字时代的未来。
Python是众多研究人员眼中的一流工具,主要原因在于它所提供的可用于存储、操作、洞察数据的各种库。数据科学堆栈的各个部分都存在多种资源,但只有本书的新版将它们汇集于一处,包括IPython、NumPy、pandas、Matplotlib、Scikit-Learn以及其他相关工具。熟悉阅读和编写Python代码的在职科技人员和数据处理人员会发现这份全面的案头参考书的第二版非常适合处理各种日常问题:数据的操作、转换、清理;不同类型数据的可视化;使用数据建立统计或机器学习模型。一句话,这是Python科学计算的推荐参考。
本书作为循证医学微专业系列丛书的第一本,阐述了Meta分析与网状Meta分析以及GRADE分级方法的基础知识,并结合案例介绍了19种Meta分析软件如何实现单臂、双臂、网状和诊断试验准确性研究Meta分析,同时介绍了5种文献自动化检索软件、5种文献自动化筛选软件、2种偏倚风险评估辅助软件、3种数据辅助提取软件、4种辅助撰写软件以及2种证据分级软件。本书系统全面呈现了37种软件,实现了Meta分析数据分析和呈现一体化;力求“教了就会用”,利用图片把每个软件使用过程中遇到的核心问题与难点展示给读者,图文并茂,讲解深入浅出,可操作性强;内容实用性强,贴近前沿进展,具有指导意义。