微积分变魔术:一团面积变一条高,俗话“油饼变油条”,行话“二维变一维”。秘密含在一张表之中:一张画像加两行证明,一行决定、二行证毕。
本书为微积分入门科普读物,书中以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需“轻松阅读”便可以理解微积分原理的入门书。
本书介绍了十多位优秀的数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历 的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。 本书兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物, 是数学爱好者的佳肴。
本书介绍了十多位优秀的数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历 的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。 本书兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物, 是数学爱好者的佳肴。
本书介绍了偏微分方程数值解的两类主要方法:有限差分方法和有限元方法.其内容包括有限差分方法的基本概念;双曲型方程、抛物型方程及椭圆型方程的有限差分方法;数学物理方程的变分原理;有限元离散方法以及其他一些相关的课题等.在介绍每种具体方法的同时,还给出了相应的理论分析.各章附有习题.本书可作为高等学校理工科专业研究生教材,有关本科专业也可作教材使用,此外也可供从事科学与工程计算的科技人员参考.
本书由一线数学教师结合多年的教学实践编写而成.全书把微积分和相关经济学知识有机结合,内容的深度广度与经济类、管理类各专业微积分教学要求相符.全书分上、下两册,共12章.本书是上册,内容包括函数、极限、连续,导数与微分,中值定理与导数应用,不定积分,定积分及其应用.各节均配有一定量的习题,章末附有自测题,书后附有习题答案.
赵利彬等编著的《经济数学基础微积分》是在贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”要求的基础上,按照国家非数学类专业数学基础课程教学指导委员会*提出的“经济管理类本科数学基础课程教学基本要求”,为适应21世纪教学改革的需要与市场经济对人才的需求,结合一些本专科院校学生的基础和特点进行编写的。 《经济数学基础微积分》内容包括:函数、极限与连续、导数与微分、中值定理与导数应用、不定积分、定积分、定积分应用、广义积分、向量代数与空间解析几何、多元函数微分学及其应用、重积分、无穷级数、常微分方程。书内各节后均配有相应的习题,书末附有习题参考答案。 《经济数学基础微积分》体系结构严谨、知识系统、讲解透彻、内容难度适宜、语言通俗易懂、例题习题丰富。适合作为普通高等院
《微积分学基础(第2版)》是按照*颁布的《高职高专教育高等数学课程教学基本要求》,依据山西省级科研项目《高职高专高等数学教材开发研究》,由教学一线具有丰富教学经验的教师编写而成。编写以“立足高职,培养素质、满足专业需求、引导应用”的原则,结合现阶段高职学生的基本素质现状与专业教学对基础学科“降低难度、适当扩大知识范围”的要求,在一元函数微积分学中适当融入多元函数微积分学知识,深入浅出,教学与自学相长。本书包括函数与极限、微分学、积分学、常微分方程、MATLAB软件基本应用五部分内容,章末配备“阅读拓展”与“项目问题”,这对于增大知识形成的“弹性”、引申学生探究、便于能力考查十分有益。《微积分学基础(第2版)》可作为工科类、管理类等在校高职高专大学生教学用书。教学过程中可根据专业需求选择教
本教材在结合教指委基本要求的基础上,选择合适的教学内容和组织顺序,能够适用于普通本科教学,注重经济学案例的使用,强调经济问题的应用,体现出经济数学的“经济”特色。内容包含定积分、多元函数微积分、无穷级数、微分方程以及差分方程等知识。习题将按节设计,以提高题、综合题为主,适于学生平时练习考试及考研。
本书根据作者多年来为各种不同程度的大学生和研究生讲课及讨论班上报告的内容整理而成。*章对极限理论的发展作了历史的回顾。以下六章分别讨论函数、微分学、积分学、傅里叶分析、实分析与点集拓扑学基础以及微分流形理论。每一章都强调有关理论的基本问题、基本理论和基本方法的历史的背景,其与物理科学的内在联系,其现代的发展与陈述方式特别是它与其他数学分支的关系。同时对一些数学和物理学中重要的而学生常常不了解的问题作了阐述。因此,它涉及了除微积分以外的许多数学分支:主要有实和复分析、微分方程、泛函分析、变分法和拓扑学的某些部分。同样对经典物理学 牛顿力学和电磁学作了较深入的讨论。其目的则是引导学生去重新审视和整理自己已学过的数学知识,并为学习新的数学知识 例如数学物理做准备。 本书适合于已学过微
《微积分》是根据*“经济管理类本科数学基础课程教学基本要求”,并结合作者多年在教学线积累的丰富教学经验,参考国内外若干优秀教材编写而成。全书分为上、下两册,本书是上册,由程舰、游雪肖主编,内容包括:函数极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分。本书按节配置习题,每章配有总习题A、B两套,书末附有习题参考答案及提示,便于读者参考。 全书结构严谨,论证简明,叙述清晰,例题典型,便于教学。可作为高等院校经济类、管理类各专业本科生的微积分课程教材,也可作为硕士研究生考前学习用书。
本书主要内容包含函数、极限与连续、导数与微分、中值定理与导数的应用、不定积分、定积分、无穷级数、多元函数微积分、常微分方程、差分方程等,可以作为经济和管理类专业采用的教材,提供了微积分在经济学中应用的背景和实例。 本书在如下方面作了改进: 1.对内容作必要调整,将实际教学中基本上不涉及的章节或知识点删除。调整后,教学重点更加突出,更能适应不同的教学对象,有助于教学安排,提高教材使用效率。2.更加强化对数学的基本概念、基本理论和基本运算的表述。3.全方位地降低教材的难度。本着“够用”和“注重实效”的原则,本书尽可能降低教材的难度,以适应绝大多数的经济、管理类专业及相类似专业的学生的学习能力和需求。本书在调整内容和改变编写的思路的基础上,讲述微积分的基本概念和基本定理时,除了作必
《微积分》内容包括:函数、极限与连续、导数与微分、微分中值定理与导数的应用,不定积分、定积分、向量代数与空间解析几何、多元函数微积分学、无穷级数、微分方程和差分方程简介。各章配有循序渐进、难度适当的习题,书末附有各章习题参考答案。教材内容处理上在不影响本学科的系统性、科学性的前提下,力求使基本概念引入自然、形象和直观,有意识地融人数学文化的教育。尽可能地联系经济管理领域中的实际问题,培养学生解决实际问题的能力,并注意到培养学生的运算能力、解题方法和技巧。本教材可供经济管理类本科各专业使用。
张裕生编著的《微积分学习指导与作业设计》按照高等学校数学课程教学指导委员会制定的《高等数学课程教学基本要求》及硕士研究生入学考试大纲和专升本考试大纲编写。全书按同济大学《高等数学(第五版)》顺序编写,分为12章。各章主要分为教学要求、知识要点、答疑解惑、范例解析、基础作业题、综合作业题、自测题、参考答案与提示等8个模块。《微积分学习指导与作业设计》可作为本科生及各类专科生学期考试及考研、专升本考试复习的辅导教材,也可供教师与科技人员参考。
本书是微积分(上册)(经管类?第五版)的教学参考书,根据高等院校经管类本科专业微积分数学课程的教学大纲编写而成,并在第四版的基础上进行了修订和完善。包含函数与极限、一元微分学、一元积分学等内容的学习辅导与习题解答。
该书是《微积分(下册)(经管类 第五版)》配套的辅导书。该系列教辅书均根据教材章节顺序建设了相应的学习辅导内容,其中每一节的设计中包括了该节的主要知识归纳、典型例题分析与习题解答等内容,而每一章的设计中包括了该章的教学基本要求、知识点网络图、题型分析与总习题解答,有助于学生巩固教材知识并拓展应用。
本书主要面向应用型本科人才的培养。内容包括:函数,极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分,多元函数微积分学,无穷级数,微分方程与差分方程等。每章末附有知识窗,或介绍微积分发展史,或介绍数学大师趣闻轶事等,能拓宽视野,扩展知识面,提高数学素养。 本书在编写过程中注重数学思想的渗透,重视数学概念产生背景的分析,引进概念尽量结合生活实际,由直观到抽象,深入浅出,通俗易懂;选编了相当数量的经济应用例题,以提高读者运用数学知识解决实际经济问题的能力。本书课后习题按照一定的难易比例进行配备,习题中融入了近年考研真题,满足各层次学生的学习需求。 本书适用于经济类本科各专业,亦可供其他相关专业选用,适用面较广。本书还可以作为考研读者及科技工作者的参考书。
为了帮助应用数学,计算数学,运筹控制等专业的教师、研究生和高年级大学生以及其他非数学专业的教学与研究人员和他们的研究生熟练地运用偏微分方程方法去解决科学技术和实际问题,本书把注意力集中在把一些常用方法(Green函数法、分离变量法、变分方法、特征线法以及量纲分析方法等)讲得尽可能透彻一些,把一些常见的物理和力学模型(非线性波、流体、气体和固体的运动模型等)推导得尽可能简明一些,把一些近代数学概念(Hilbert空间,Sobolev空间,广义函数,间断解等)阐述得尽可能浅近一些.要求读者只要具有数学分析,线性代数,常微分方程和初等数学物理方程等基础知识,就可顺利阅读此书,并有所裨益。 本书可以作为上述各数学专业和相关的物理、力学专业的研究生教学用书,以及大学数学物理方程课程的教学参考书.并希望能成为在实际工作