本书由江苏省信息学奥林匹克竞赛委员会组织富有算法竞赛教学经验的省内知名一线教师编写。以程序设计中的常用算法与数据结构为主要内容,来训练计算思维,提升用算法和数据结构来解决实际问题的能力。力求用浅显易懂的语言来描述数据结构中的哈希表、树、图的概念及其存储。通过经典的问题分析,来渗透动态规划的状态表示及其常用的优化策略。结合算法和数据结构,系统的介绍树和图的基本算法及其初等数论和组合数学相关知识。 本书可以作为中小学生程序设计的拓展教材,也可供大学生及算法爱好者参考。
自动驾驶汽车、自然语言识别、内容推荐引擎的实现都离不开人工智能和机器学习算法。机器学习算法只有在解决具体问题时才能体现价值。本书以解决各种趣味问题为目标,教读者用Python、JavaScript、C 编写机器学习算法,内容深入浅出,兼具实用性与大局观。读者将学习编写遗传算法、启发式算法、爬山算法、模拟退火算法,运用蒙特 卡洛模拟、点格自动机、适应函数解决问题。本书尤其适合对人工智能和机器学习感兴趣的程序员进阶学习。
数据结构是高等学校计算机及其相关专业的核心课程,是计算机程序设计的基础。本书按照“像外行一样思考,像专家一样实践”的解决问题的思维方法,列举大量实际或工程案例,从具体问题中引出抽象概念,运用类比、图形化描述等各种方式,对经典数据结构内容做深入浅出的介绍。在介绍数据结构和算法的基本概念和算法分析方法的基础之上,从软件开发的角度,通过应用背景或知识背景介绍、数据分析、函数设计、算法设计、测试调试等环节,分别对顺序表、链表、栈、队列、串、数组、树、图等基本类型的数据结构进行了分析和讨论;介绍数据的典型操作方法,如数据排序方法和查找方法;介绍常见的如递归法、分治法、动态规划、贪心法等经典算法。
本书由算法领域的知名专家StevenSkiena教授编写,其主要内容包括基本算法设计、算法分析、数据结构、排序与查找、图算法、动态规划以及难解问题与近似算法。“设计”是本书的核心,作者不但以生动有趣的语言讲授了算法设计中的常用技术与思想,还着重教导我们应从已有经典设计和实现中汲取力量来完成问题求解,而这正是一个算法工作者所的素养。为了更全面真实地展现作者的算法设计观,本书每章都给出了若干取自现实案例的精彩WarStory,读者可以从中深刻体验到算法设计的曲折历程。为了减轻阅读的难度,作者淡化了繁难的算法分析而仅仅给出性能结论与对比,这在同类算法书中是相当少见的。此外,本书配套网站包含大量算法设计资源以及作者本人的授课视频,为算法设计者提供了极大的便利。本书长期居于算法教材前列,是一本不可多得的“算法
全书共13章,分为2篇。第1篇基础知识,介绍了人工智能发展里程、计算机视觉概要、深度学习和计算机视觉中的基础数学知识、神经网络及其相关的机器学习基础、卷积神经网络及其一些常见结构,后对前沿的趋势进行了简单探讨。第2篇实例精讲,介绍了Python基础、OpneCV基础、简单的分类神经网络、图像识别、利用Caffe做回归、迁移学习和模型微调、目标检测、度量学习和图像风格迁移等常见的计算机视觉应用场景。从第5章开始包含了很多有趣和实用的代码示例。从第7章开始的所有实例都基于当前流行的深度学习框架中的Caffe和MXNet。
算法之大,大到可以囊括宇宙万物的运行规律;算法之小,小到寥寥数行代码即可展现一个神奇的功能。算法的应用和乐趣在生活中无处不在:历法和二十四节气计算使用的是霍纳法则和求解一元高次方程的牛顿迭代法;音频播放器跳动的实时频谱背后是离散傅立叶变换算法;DOS时代的PCX图像文件格式使用的是简单有效的RLE压缩算法;RSA加密算法的光环之下是朴实的欧几里德算法、蒙哥马利算法和米勒-拉宾算法;井字棋、黑白棋、五子棋和俄罗斯方块游戏背后是各种有趣的AI算法;华容道游戏求解的简单穷举算法中还蕴藏着对棋盘状态的哈希算法;遗传算法神秘不可测,但用遗传算法求解0-1背包问题只用了60多行代码……一本书带你走进色彩缤纷的算法世界,让你尽享算法的乐趣。
《程序员代码面试指南:IT名企算法与数据结构题目解》是一本程序员面试宝典!《程序员代码面试指南:IT名企算法与数据结构题目解》对IT名企代码面试各类题目的解进行了总结,并提供了相关代码实现。针对当前程序员面试缺乏专业题目汇总这一痛点,《程序员代码面试指南:IT名企算法与数据结构题目解》选取将近200道真实出现过的经典代码面试题,帮助广大程序员的面试准备做到万无一失。“刷”完本书后,你就是“题王”!《程序员代码面试指南:IT名企算法与数据结构题目解》采用题目解答的方式组织内容,并把面试题类型相近或者解法相近的题目尽量放在一起,读者在学习本书时很容易看出面试题解法之间的联系,使知识的学习避免碎片化。《程序员代码面试指南:IT名企算法与数据结构题目解》将所有的面试题从难到易依次分为“将、校、尉、士”
本书分为上、下两篇,共10章。上篇用5章的篇幅介绍了算法和数据结构的基础知识,包括基础算法思想、简单数据结构、复杂数据结构、排序和查找算法等内容;下篇用5章的篇幅介绍了用数据结构解决实际问题的相关程序,包括解决数学问题、数据结构问题、算法经典问题等内容以及信息学奥赛部分试题的程序,最后一章介绍了与算法和数据结构相关的常见面试题。本书案例实用性强、结构清晰、实例代码讲解详尽,可作为大中专院校学生学习数据结构以及做课程设计的参考书,也可以作为有程序设计基础的程序员的参考书,还可作为参加信息学奥赛选手的参考书。
《强化学习精要:核心算法与TensorFlow实现》用通俗幽默的语言深入浅出地介绍了强化学习的基本算法与代码实现,为读者构建了一个完整的强化学习知识体系,同时介绍了这些算法的具体实现方式。从基本的马尔可夫决策过程,到各种复杂的强化学习算法,读者都可以从本书中学习到。本书除了介绍这些算法的原理,还深入分析了算法之间的内在联系,可以帮助读者举一反三,掌握算法精髓。书中介绍的代码可以帮助读者快速将算法应用到实践中。
《强化学习精要:核心算法与TensorFlow实现》用通俗幽默的语言深入浅出地介绍了强化学习的基本算法与代码实现,为读者构建了一个完整的强化学习知识体系,同时介绍了这些算法的具体实现方式。从基本的马尔可夫决策过程,到各种复杂的强化学习算法,读者都可以从本书中学习到。本书除了介绍这些算法的原理,还深入分析了算法之间的内在联系,可以帮助读者举一反三,掌握算法精髓。书中介绍的代码可以帮助读者快速将算法应用到实践中。