本书编者倡导 自主编程 ,以问题解决为主线,致力于提升读者的计算思维与编程技能,引导读者科学地学习算法。全书共分为四章:第一章重点阐述数据抽象的方法及如何选择合适的数据结构,并介绍线性数据结构的基本应用;第二章通过生动的例子,详述了模拟、解析和贪心这三种策略,展示了如何结合严密的算法逻辑与实际操作经验来解决问题;第三章则以深入浅出的方式,讲解了 大化小 的思维方式,介绍了如何利用递推、分治和动态规划等算法来简化和解决复杂问题;第四章全面剖析了好算法的标准,并详细介绍了优化算法时间复杂度和空间复杂度的常用技巧。 本书可以作为数据结构和算法入门的培训教材,也可以作为准备参加全国信息学奥林匹克竞赛的学生赛前集训用书,还可以作为有一定编程语言基础的算法爱好者的参考书籍。
部分开始解决问题第二部分算法分析第三部分算法设计范式第四部分一些的算法第五部分基本数据结构第六部分树第七部分图
《强化学习精要:核心算法与TensorFlow实现》用通俗幽默的语言深入浅出地介绍了强化学习的基本算法与代码实现,为读者构建了一个完整的强化学习知识体系,同时介绍了这些算法的具体实现方式。从基本的马尔可夫决策过程,到各种复杂的强化学习算法,读者都可以从本书中学习到。本书除了介绍这些算法的原理,还深入分析了算法之间的内在联系,可以帮助读者举一反三,掌握算法精髓。书中介绍的代码可以帮助读者快速将算法应用到实践中。
本书从群智能优化算法和高维多目标优化两方面入手,一方面系统地介绍了差分进化算法的基本原理及外研究现状,通过分析算法的模型、关键步骤及参数设置,设计和构建了高性能的改进算法,并将其应用于医学图像处理、电子商务等实际工程领域;另一方面,深入分析了高维多目标优化算法的基本原理、外研究现状及关键技术难点,详细描述了基于差分进化算法的高维多目标优化算法设计、构建与实验分析,以及其在智能交通系统中的实际应用。本书取材新颖、内容翔实、覆盖面广,案例分析具有较强的可重复性和可执行性,不仅适合于初学者,也适合自动化、计算机、信息科学等相关专业的高年级本科生和研究生、进化计算及高维多目标优化研究爱好者以及工程优化人员等。
本书是一本简明的MATLAB优化算法综合性参考书,以MATLAB?R2016b软件版本为基础,根据常用优化算法编写,包含多种优化算法的MATLAB应用方法,是读者掌握MATLAB在优化算法中应用的有力工具。全书分为四个部分共18章,包括MATLAB应用基础、常规优化算法、智能优化算法和综合应用。部分从MATLAB基础知识开始,详细介绍编程和程序设计、二维绘图、三维绘图、GUI应用等内容;?第二部分介绍MATLAB线性规划、非线性规划、无约束一维极值、无约束多维极值、约束优化方法、二次规划、多目标函数的优化方法等内容;?第三部分介绍免疫优化算法及其MATLAB实现、粒子群优化算法的MATLAB实现、遗传优化算法的MATLAB实现、小波变换的MATLAB实现、神经网络的MATLAB实现等内容;?第四部分主要介绍MATLAB在分形维数和经济金融*优化中的应用。在本书的*后,录中还给出了MATLAB基本命令的介绍
本书内容按照算法策略分为7章。章从算法之美、简单小问题、趣味故事引入算法概念、时间复杂度、空间复杂度的概念和计算方法,以及算法设计的爆炸性增量问题,使读者体验算法的奥妙。第2~7章介绍经典算法的设计策略、实战演练、算法分析及优化拓展,分别讲解贪心算法、分治算法、动态规划、回溯法、分支限界法、线性规划和网络流。每一种算法都有4~10个实例,共50个大型实例,包括经典的构造实例和实际应用实例,按照问题分析、算法设计、图解、伪代码详解、实战演练、算法解析及优化拓展的流程,讲解清楚且通俗易懂。附录介绍常见的数据结构及算法改进用到的相关知识,包括sort函数、优先队列、邻接表、并查集、四边不等式、排列树、贝尔曼规则、增广路复杂性计算、大流小割定理等内容。本书可作为程序员的学习用书,也适合从未有过编程