《SQL即查即用》从实用角度出发,由浅入深地讲解了SQL的基本概念、常用语法和操作技术。全书共24章,包括数据的简单查询、条件查询、模糊查询、过滤数据以及数据排序、分组、统计等内容,还包括子查询、多表连接、数据的增删改查、视图、存储过程、游标、事务处理以及数据库和数据表的管理等高级技术。包括200多个SQL语法,200多个应用示例。有很强的实用性和可操作性,既适合作为SQL初学者的学习用书,又适合作为程序开发人员和数据库管理人员随时查阅的参考工具书。为便于读者对SQL语法的理解,书中所有知识点和语法都结合具体示例进行讲解,并以对比图方式鲜明直观地展示数据变化,帮助读者快速掌握实际操作技巧,学以致用。书中还设置了注意、说明、常见错误、多学两招等贴心栏目,及时指出注意事项并给出相应的解决方案,帮助读者避开学
SQL是使用最广泛的数据库语言,绝大多数重要的DBMS支持SQL。本书由浅入深地讲解了SQL的基本概念和语法,涉及数据的排序、过滤和分组,以及表、视图、联结、子查询、游标、存储过程和触发器等内容,实例丰富,便于查阅。新版对书中的案例进行了全面的更新,并增加了章后挑战题,便于读者巩固所学知识。
阅读本书可以学习使用Python对数据集进行操作、处理、清洗和规整。第3版针对Python3.10和pandas1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效地解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。 本书作者Wes McKinney是Python pandas项目的创始人。本书对Python数据科学工具的介绍既贴近实战又内容新颗,非常适合刚开始学习Python的数据分析师或刚开始学习数据科学和科学计算的Python程序员阅读。读者可以从GitHub获取数据文件和相关资料。 学完本书,你将能够: ·使用Jupyter notebook和IPython shell进行探索性计算。 ·掌握NumPy的基础功能和高级功能。 ·掌握pandas库中的数据分析工具。 ·使用灵活的工具对数据进行加载、清洗、转换、合并和重塑。 ·使用matplotlib进行信息可视化。 ·使用pandas的groupBy功能对数据集进行切片、切
本书是畅销书《SQL基础教程》第2版,介绍了关系数据库以及用来操作关系数据库的SQL语言的使用方法。书中通过丰富的图示、大量示例程序和详实的操作步骤说明,让读者循序渐进地掌握SQL的基础知识和使用技巧,切实提高编程能力。每章结尾设置有练习题,帮助读者检验对各章内容的理解程度。另外,本书还将重要知识点总结为“法则”,方便读者随时查阅。第2版除了将示例程序更新为对应近期新的DB的SQL之外,还新增了一章,介绍如何从应用程序执行SQL。
《深入浅出数据分析》以类似"章回小说”的活泼形式,生动地向读者展现出色的数据分析人员应知应会的技术:数据分析基本步骤、实验方法、优化方法、假设检验方法、贝叶斯统计方法、主观概率法、启发法、直方图法、回归法、误差处理、相关数据库、数据整理技巧;正文之后,意犹未尽地以三篇附录介绍数据分析十大要务、R工具及ToolPak工具,在充分展现目标知识以外,为读者搭建了走向深入研究的桥梁。
这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 第一部分(第1~3章) 第1章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细阐述了不同类型的数据的管理方式和
本书通过大量案例研究介绍数据可视化的基础知识,以及如何利用数据创造出吸引人的、信息量大的、有说服力的故事,进而达到有效沟通的目的。具体内容包括:如何充分理解上下文,如何选择合适的图表,如何消除杂乱,如何聚焦受众的视线,如何像设计师一样思考,以及如何用数据讲故事。 本书适合所有需要用图表展示信息和数据的人士阅读。
了解数据结构与算法是透彻理解计算机科学的前提。随着Python日益广泛的应用,Python程序员需要实现与传统的面向对象编程语言相似的数据结构与算法。本书是用Python描述数据结构与算法的开山之作,汇聚了作者多年的实战经验,向读者透彻讲解在Python环境下,如何通过一系列存储机制有效地实现各类算法。通过本书,读者将深刻理解Python数据结构、递归、搜索、排序、树与图的应用,等等。这一版重写了书中的示例代码,并对诸多内容做了修正。
Python是一门开源的计算机编程语言,凭借其易学、灵活等特点,得到了越来越多人的认可和青睐。金融科技日新月异,金融行业的数字化、科技化和智慧化快速推进,Python在金融领域有着很好的应用现状和前景。 本书在上一版的基础上进行了内容升级,持续聚焦Python在金融分析与风险管理的应用,第2版从原先的12章扩充至15章,并依次划分为基础篇(共5章)、中阶篇(共5章)以及高阶篇(共5章),基础篇结合金融场景演示了Python语言以及NumPy、pandas、Matplotlib、SciPy以及statsmodel等金融领域常用的第三方模块的编程方法;中阶篇通过Python编程结合金融实例,依次探讨利率、汇率、债券、股票、互换合约、期货合约等产品的定价、风险测度以及风险管控等内容;高阶篇则融合Python与金融案例,探究了期权的定价、希腊字母、动态对冲、隐含波动率、交易策略及其他延
本书版于1983年出版至今已经第5版。第5版是“十二五”普通高等教育本科规划教材。相应课程于2004年被评为北京市精品课程,2005年被评为国家精品课程,2014年被批准为精品资源共享课。本书系统全面地阐述数据库系统的基础理论、基本技术和基本方法。全书分为4篇16章。基础篇包括绪论、关系数据库、关系数据库标准语言SQL、数据库安全性和数据库完整性,共5章;设计与应用开发篇包括关系数据理论、数据库设计和数据库编程,共3章;系统篇包括关系查询处理和查询优化、数据库恢复技术、并发控制和数据库管理系统,共4章;新技术篇包括数据管理技术发展概述、大数据管理、内存数据库系统和数据仓库与联机分析处理技术,共4章。本书可以作为高等学校计算机专业、信息管理与信息系统等相关专业数据库课程的教材。也可供从事数据库系统研究、开发和应用
本书提供了学习大数据技术及架构的一站式解决方案,覆盖了大数据生态圈中的完整技术体系,包括数据采集、数据存储、分布式资源管理、数据计算、数据分析、任务调度、数据检索、大数据底层基础技术和大数据集群安装与管理。 本书还介绍了多个企业级大数据应用案例(包括海量数据采集、“双十一”数据大屏、海量数据全文搜索系统等)和大数据平台架构案例(包括离线数据仓库架构、实时数据仓库架构、批流一体化数据仓库架构、数据中台架构、直播大数据平台架构、电商大数据平台架构等),可以帮助读者从全局角度理解大数据。 在本书中,技术内容基本上都是从零讲起的,结合原理和架构,以“图解+实战”的形式帮助读者轻松理解复杂的知识。 本书适合对大数据感兴趣的开发人员。无论读者是否接触过大数据开发,只要具备一定的Java开发
无论是审计师还是会计师,在工作中都会遇到如何获取数据、分析数据的问题,甚至有时想制作一些自动化的工具或利用编程技巧来辅助完成重复性的工作。本书正是从审计师、会计师的实际工作场景出发,讲解IT审计的学习技巧、SQL基础与实战技巧、Python基础与Python实战技巧,以及数据可视化技巧等。
本书展示了如何验证自己的设想、找到真正的客户、打造能赚钱的产品,以及提升企业知名度。30多个案例分析,全球100多位知名企业家的真知灼见,为你呈现来之不易、经过实践检验的创业心得和宝贵经验,值得每位创业家和企业家一读。 深入理解精益创业、数据分析基础,和数据驱动的思维模式 如何将六个典型的商业模式应用到各种规模的新企业 找到你的关键指标 确定底线,找到出发点 在大企业中应用精益分析,打造新产品