阅读本书可以学习使用Python对数据集进行操作、处理、清洗和规整。第3版针对Python3.10和pandas1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效地解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。 本书作者Wes McKinney是Python pandas项目的创始人。本书对Python数据科学工具的介绍既贴近实战又内容新颗,非常适合刚开始学习Python的数据分析师或刚开始学习数据科学和科学计算的Python程序员阅读。读者可以从GitHub获取数据文件和相关资料。 学完本书,你将能够: ·使用Jupyter notebook和IPython shell进行探索性计算。 ·掌握NumPy的基础功能和高级功能。 ·掌握pandas库中的数据分析工具。 ·使用灵活的工具对数据进行加载、清洗、转换、合并和重塑。 ·使用matplotlib进行信息可视化。 ·使用pandas的groupBy功能对数据集进行切片、切
暂无内容简介。。。。。。
本书教你如何从基于时间的数据(如日志、客户分析和其他事件流)中获得即时、有意义的预测。在这本通俗易懂的书中,作者通过带有注释的Python代码进行全面演示,你将学习用于时间序列预测的统计和深度学习方法。通过跟随书中的实例锻炼你的技能,你很快就会准备好建立自己的准确、有洞察力的预测。
本书以 的开源关系数据库和主流的非关系NoSQL数据库为背景,介绍数据库系统原理及其应用开发技术。全书共7章,主要内容包括数据库系统概论、数据库关系模型、数据库SQL操作语言、数据库设计与实现、数据库管理、数据库编程、NoSQL数据库技术。本书除介绍数据库系统原理外,还针对数据库应用系统开发,介绍数据库建模设计、数据库SQL编程、数据库应用程序Java编程,以及NoSQL数据库应用实践方法。 本书取材新颖、内容详实、案例丰富,在数据库知识结构组织、项目案例设计、课后习题编写等方面强调工程教育特点。针对高水平数据库人才培养需求,本书突出对学生数据库设计能力、数据库编程能力、数据库管理能力及数据库新技术应用能力的培养。本书配套提供课程教学PPT、案例设计模型、案例编程代码、习题参考答案、课程教学大纲等学习资源。 本
在数字中国这一国家战略的牵引下,数据要素和数字化转型的研究和落地如火如荼。数据中台是企业开展数据要素相关实践和数字化转型的关键基础设施,本书在这样的时代背景下,以帮助企业“管好数据、用好数据”为宗旨,内容围绕数据中台架构与建设方法论、数据中台建设流程和内容、数据中台工程化交付、数据中台行业解决方案4个维度全面、深度展开。 本书一共17章,逻辑上分为四个部分: *第1部分数据中台建设方法与架构设计(第1~3章) 首先,从产生、定义、认知、相关概念、建设方法论、架构等方面对数据中台进行了全面介绍,帮助读者建立对数据中台的清晰认识和理解,熟悉数据中台的建设机制;然后,总结了企业数据应用成熟度评估、数据中台在各个行业的应用场景,以及数据中台的成功要素。 *第2部分数据中台建设内容与运营方法(第4~10章)
《企业级数据架构:核心要素、架构模型、数据管理与平台搭建》由李杨著
本书由国内资深MySQL专家亲自执笔,国内外多位数据库专家联袂推荐。作为国内专享一本关于InnoDB的专著,本书的第1版广受好评,第2版不仅针对近期新的MySQL 5.6对相关内容进行了全面的补充,还根据广大读者的反馈意见对第1版中存在的不足进行了完善,全书大约重写了50%的内容。本书从源代码的角度深度解析了InnoDB的体系结构、实现原理、工作机制,并给出了大量很好实践,能帮助你系统而深入地掌握InnoDB,更重要的是,它能为你设计管理高性能、高可用的数据库系统提供不错的指导。 全书一共10章,首先宏观地介绍了MySQL的体系结构和各种常见的存储引擎以及它们之间的比较;接着以InnoDB的内部实现为切入点,逐一详细讲解了InnoDB存储引擎内部的各个功能模块的实现原理,包括InnoDB存储引擎的体系结构、内存中的数据结构、基于InnoDB存储引擎的表和页的物理存
本书共包括7章,涵盖了从基础理论到实际应用的 内容。第1章深入探讨了大模型的基础理论。第2章和第3章专注于Llama 2大模型的部署和微调,提供了一系列实用的代码示例、案例分析和 实践。第4章介绍了多轮对话难题,这是许多大模型开发者和研究人员面临的一大挑战。第5章探讨了如何基于Llama 2 行业大模型,以满足特定业务需求。第6章介绍了如何利用Llama 2和LangChain构建高效的文档问答模型。第7章展示了多语言大模型的技术细节和应用场景。本书既适合刚入门的学生和研究人员阅读,也适合有多年研究经验的专家和工程师阅读。通过阅读本书,读者不仅能掌握Llama 2大模型的核心概念和技术,还能学会如何将这些知识应用于实际问题,从而在这一快速发展的领域中取得优势。
这既是一本引导读者如何使用ChatGPT低门槛、高效率学习Python数据分析与挖掘方法的著作,又是一本指导读者如何使用ChatGPT精准、高效地进行Python数据分析与挖掘实操的著作。从读者对象的角度看,本书既大大降低了没有编程经验的读者学习Python数据分析的门槛,又为有经验的Python数据分析师提供了大量实用的AI数据分析技巧,帮助他们快速转型为具备AI能力的数据分析师。从核心内容的角度看,本书不仅讲解了如何在数据预处理、数据清洗、数据可视化等基础的数据分析环节使用AI工具,而且还讲解了如何在聚类分析、预测分析等高级的数据建模环节使用AI工具。阅读完本书,你将掌握以下知识:(1)数据分析、数据挖掘以及机器学习算法的基础知识。(2)ChatGPT等AI工具的注册及使用,以及如何使用这些AI工具学习Python。(3)使用ChatGPT辅助各种常见的数据操作和数
这是一部讲解企业如何利用指标推动数字化转型和实现数字化经营的著作,详细讲解了指标体系的设计方法、指标平台的产品设计和技术架构、指标在各行业落地应用的方法。本书由行业领先的数据智能产品提供商数势科技官方出品,融合了其创始人在百度、平安、等头部企业的技术研发经验和其团队服务近百家企业的实战经验,得到了来自清华大学、信通院、腾讯、、百度等10余位专家的鼎力推荐。具体地,本书主要讲解了以下五个方面的内容:(1)从指标驱动的数字化经营新模式开始,介绍指标管理对企业经营的重要意义。(2)指标体系的设计方法论,带着设计思维模拟指标拆解、设计、落地的全过程。(3)指标管理平台的产品设计与技术架构,介绍了作者团队在多年实践中总结出的“一处定义、全局使用”的指标平台建设方法。(4)深入零售、金融、制造
本书分为两部分。第一部分为第1~7章,介绍了Python的语法、编程基础和对常见错误的处理。第二部分为第8~14章,介绍了Python的各种实践应用,分别是对目录和文件的操作,对Excel、Word和PDF文件的操作,在图像处理、网络爬虫领域的应用,以及Python的图形用户接口编程。本书以实践应用为目的,希望读者能够前后对应,根据例题举一反三。 本书可供Python爱好者和技术人员参考和自学,也非常适于用作高等院校的自动化类、电子信息类、机械类、计算机类等相关专业的教材。
本书紧密结合当前边缘计算领域近期新的发展趋势与研究成果,本着务实具体、详略得当、启发创新的指导思想,系统、全面地介绍了边缘计算的原理与应用,包括基本概念、架构原理、核心技术、主要研究方向与挑战,以及多个应用的近期新研究进展。撰写本书时最艰难的是选择从哪些应用视角来讲述边缘计算。最终,我们选择了计算卸载、服务部署、视频分析、模型推断、联邦学习等当下应用最为广泛的若干应用进行了阐述。
本书从理论与实践两个层次对基于语义网的数字文件集成智能化组织研究情况进行了介绍,主要内容包括知识组织及其用语义网工具与技术、数字文件智能化组织的概念、意义、基本性质、基本结构与功能、原理,以及数字文件智能化组织体系的静态与动态构建,基于知识表示语言资源描述框架的、面向文件的数字公文文本智能化组织,基于RDF的、面向数据的数字文件背景信息文本智能化组织,面向数据的数字文件内容著录信息文本智能化组织等
《SQL Server从入门到精通(第5版)》从初学者角度出发,通过通俗易懂的语言、丰富多彩的实例,详细介绍了SQL Server开发所必需的各方面技术。全书分为4篇共19章,内容包括数据库基础、SQL Server数据库环境搭建、创建与管理数据库、操作数据表、SQL基础、SQL函数的使用、SQL数据查询基础、SQL数据高级查询、视图的使用、存储过程、触发器、游标的使用、索引与数据完整性、SQL中的事务、维护SQL Server数据库、数据库的安全机制、Visual C+++SQL Server实现酒店客房管理系统、C#+SQL Server实现企业人事管理系统和Java+SQL Server实现学生成绩管理系统。所有知识都结合具体实例进行介绍,涉及的程序代码给出了详细的注释,读者可以轻松领会SQL Server 2022的精髓,快速提升开发技能。 另外,本书除了纸质内容,还配备了数据库在线开发资源库,主要内容如下: 同步教学微课
本书以 SQL 的基础知识为出发点,从 SQL 的简单查询、汇总函数、分组,到多表查询、窗口函数等 SQL 功能,逐一进行介绍与讲解,基本涵盖了学习 SQL 过程中需要掌握的主要内容。 本书 的特色是结合大量的面试题,让读者清楚地了解如何用所学的 SQL 知识解决工作中的实际问题。第 8 章提供了从不同行业、不同岗位的业务场景出发的实战项目训练,便于读者在实践中学习,巩固 SQL 知识和技能,理解与掌握相关内容,并能够将其快速应用于实际工作中。