本书以算法设计策略和算法分析方法为知识单元,将计算机经典问题与算法设计方法和技术技巧结合,系统介绍算法设计基础与技术及其经典问题应用。全书共9章,主要内容包括:算法和算法性能的基础知识,算法分析的基本数学方法,递归与分治、动态规划、贪婪算法、回溯法、分支限界法、随机算法、神经网络智能算法等不同算法设计策略,提供了相关算法设计技术和有效的算法分析,以及大量的详细实例和应用,同时对NPC和NP完全问题给出分析。 本书可供高等院校计算机算法设计与分析相关课程的教学使用,也可为计算机理论研究人员、计算机算法设计人员提供参考。
本书较为系统地介绍最优化领域中比较成熟的基本理论与方法。基本理论包括最优化问题解的必要条件和充分条件以及各种算法的收敛性理论。介绍的算法有:无约束问题的最速下降法、Newton法、拟Newton法、共辄梯度法、信赖域算法和直接法;非线性方程组和最小二乘问题的Newton法和拟Newton法;约束问题的罚函数法、乘子法、可行方向法、序列二次规划算法和信赖域算法等。还介绍了线性规划的基本理论与单纯形算法以及求解二次规划的有效集法。并简单介绍了求解全局最优化问题的几种常用算法。 作为基本工具,本书在附录中简要介绍了求解线性方程组的常用直接法和选代法以及MATLAB初步知识。
本书编者倡导 自主编程 ,以问题解决为主线,致力于提升读者的计算思维与编程技能,引导读者科学地学习算法。全书共分为四章:第一章重点阐述数据抽象的方法及如何选择合适的数据结构,并介绍线性数据结构的基本应用;第二章通过生动的例子,详述了模拟、解析和贪心这三种策略,展示了如何结合严密的算法逻辑与实际操作经验来解决问题;第三章则以深入浅出的方式,讲解了 大化小 的思维方式,介绍了如何利用递推、分治和动态规划等算法来简化和解决复杂问题;第四章全面剖析了好算法的标准,并详细介绍了优化算法时间复杂度和空间复杂度的常用技巧。 本书可以作为数据结构和算法入门的培训教材,也可以作为准备参加全国信息学奥林匹克竞赛的学生赛前集训用书,还可以作为有一定编程语言基础的算法爱好者的参考书籍。
《算法设计编程实验(第2版)》基于作者20余年来总结的编程知识体系和行之有效的编程能力训练方法,以ACM-ICPC、IOI等各类大型程序设计竞赛的经典试题为素材编写而成,通过启发式、案例化的教学,系统
图像去噪、去模糊、修补、超分辨率和压缩感知重建等图像反问题的求解在工程实践中有重要的应用价值,也是近些年来图像处理领域的前沿热点。本书着重对图像反问题病态性的数值分析和基于算子分裂的图像反问题求解方法
在计算机视觉处理中,特征指的是能够解决某种特定任务的信息。图像局部特征在目标识别、目标跟踪、目标匹配、三维重建、图像检索等应用中发挥着重要的作用。它是近20年来在计算机视觉领域中研究的热点问题之一。本
本书是以大学生程序设计竞赛为基础、面向已有C 入门知识且想要进一步学习的读者编写的C 进阶训练指南。全书分为回溯法、图、动态规划、网格等部分。回溯法部分介绍单向搜索和双向搜索,给出不错搜索的技巧;