本书是深度学习领域的入门教材,系统地整理了深度学习的知识体系,并由浅入深地阐述了深度学习的原理、模型以及方法,使得读者能全面地掌握深度学习的相关知识,并提高以深度学习技术来解决实际问题的能力。 全书共15章,分为三个部分。 分为机器学习基础:第1章是绪论,介绍人工智能、机器学习、深度学习的概要,使读者全面了解相关知识;第2~3章介绍机器学习的基础知识。 第二部分是基础模型:第4~6章分别讲述三种主要的神经网络模型:前馈神经网络、卷积神经网络和循环神经网络;第7章介绍神经网络的优化与正则化方法;第8章介绍神经网络中的注意力机制和外部记忆;第9章简要介绍一些无监督学习方法;第10章介绍一些模型独立的机器学习方法,包括集成学习、自训练、协同训练、多任务学习、迁移学习、终身学习、元学习等。 第三部分
汉语是一种声调语言,声调在辨意中发挥着重要作用,因此声调的特征研究是汉语方言研究的重要部分。本书介绍了多种智能算法在汉语方言单字调识别中的应用,为汉语方言的语言研究学者提供了新的研究方法和思路。
数据科学与人工智能数学基础课旨在帮助读者快速打下数学基础,通俗讲解每一个知识点。 全书分为3篇,共17章。其中第1篇为基础篇,主要讲述了高等数学基础、微积分、泰勒公式与拉格朗日;第2篇为核心知识篇,主要讲述了线性代数基础、特征值与矩阵分解、随机变量与概率估计、概率论基础、数据科学的几种分布、核函数变换、熵与激活函数;第3篇为 应用篇,主要讲述了回归分析、假设检验、相关分析、方差分析、聚类分析、贝叶斯分析等内容。书中案例均是与AI相关的案例。 本书适合准备从事或学习数据科学与人工智能相关行业的读者。