《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
《从代数基本定理到超数:一段经典数学的奇幻之旅(第二版)》分为四个部分,共计十四章,如 从自然数系到有理数系 、 无理数与实数系 、 代数、基本定理的定性说明 、 业余数学家阿尔岗的证明 、 美国数学家安凯屈的证明 、 圆周率及其元理性 、 自然对数的底数e及其元理性 、 有关多项式的一些理论 、 代数扩域、有限扩域与代数元域 等。
《数学概念的演变》是一本由一位杰出的数学家所著的杰作,它提供了一个独特的视角来看待数学的发展和演变。与研究数学的历史或哲学不同,怀尔德把数学视为一种广泛的文化现象。他的研究揭示了数和长度等概念是如何受到历史和社会实践的影响的。从初步的概念开始,本研究探讨了数的早期演变、几何的演变以及实数中对无穷的征服。对演变的过程进行了详细的考察,并以对现代的演变的研究结束。 《作为文化体系的数学》不能被看成是一部纯粹研究数学历史的著作。数与几何的发展基本上体现了高等数学发展的所有特点。作者通过数与几何概念的演变,深刻地揭示数学作为一种文化现象,它的发展同时受到历史和社会实践的影响。作者首次引入人类学的方法而非专业数学的方法来研究数学的发生、发展和变化过程,得出了一些十分重要的结论,为理解
本书以密码俱乐部的活动为线索,用有趣的活动和叙事化的语言向读者展示了各种用数学加密和解密的方法。本书通俗易懂,读者只要具备中学数学的知识基础,就可以徜徉在密码的世界里,与各种密码系统嬉戏。本书中涉及恺撒密码、代入式密码、模运算密码、乘法密码等经典的密码,也涵盖了现代密码学上的密码,同时提供了丰富了历史小故事。本书使用灵活,不仅适合人个阅读,也可以作为活动材料,与朋友们一起游戏。本书可以让读者认识到数学是一个有趣且迷人的学科!
中国古人以太阳的运动周期作为年,以月亮圆缺周期作为月,以闰月来协调年和月的关系。古人根据太阳一年内的位置变化以及由此引起的地面气候的演变次序,把一年又分成二十四节气,分列在十二个月中,以反映四季、气温、物候等情况。中国是个农业大国,农业生产与季节、天象有着极为密切的关系,中国古代的天文历法知识,就是在农业生产的实践中不断积累起来、又直接为农业生产服务的。二十四节气及天文历法的基础是太阳中心连续两次经过春分点所需的时间--回归年,故又称阳历。格里历的平年为365天,闰年在2月末加一天,为366天。本书把现在人们常用的年、月、日、时、季节变化的特性特征、产生发展等科学的梳理,有利于大家更好的生活和工作。
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两字之差,但是包含了一代数学大师们无数的心血。 直至1977年吉米多维奇去世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书
一个好的理论或模型应该是理解和认识现实世界的一把钥匙,而临界状态土力学就是这样一把认识土的性质和行为的钥匙。临界状态土力学将土体的变形与强度问题有机地联系了起来,成为土力学发展史上的一个里程碑。作为现代土力学中具有基础性和重要性的一部分内容,国外已经出版了很多临界状态土力学教材,并将其作为土力学教学的重要内容,但国内目前却没有出版过这方面的中文教材。 本书将详细介绍临界状态土力学的基础知识,主要内容包括:土的一般力学性质和体积变形特性、土的体积变形和剪切变形的关系、剑桥模型及三维主应力空间和平面应变状态下剑桥模型的拓展。通过对上述知识的学习,读者可以了解到如何用统一的理论框架去描述和预测土的变形和破坏行为,如何得到土体基本的关系即土的本构关系。读者通过学习加深对土
本书是与《新大学化学》(第四版)(科学出版社,2018年)教材配套的教学参考书。全书共12章,与教材相对应,具体包括化学反应基本规律、溶液与离子平衡、氧化还原反应和电化学、物质结构基础、金属元素与金属材料、非金属元素与无机非金属材料、有机高分子化合物及高分子材料、化学与能源、化学与环境保护、化学与生命、化学与生活、化学与国防等内容的学习导引。每章包括两大部分内容:本章小结(基本要求、基本概念、计算公式集锦)和习题及详解。在本章小结部分,给出了该章的知识点及重点,并对基本概念进行了详细解说。习题部分涵盖判断题、选择题、填空题、简答题、计算题等各类题型,易、中、难等各种题目,配有详细的解答,并提供了八套综合练习题。此外,本书配备了第1~6章部分习题的视频讲解,读者可扫描封底二维码下载“爱
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两字之差,但是包含了一代数学大师们无数的心血。 直至1977年吉米多维奇去世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书
内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两??世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书都是适合的。 特别是费定晖、周学圣版本题解,历经三十年风雨,三次改
【 丛书简介 】 在中学物理学习过程中,学生在获取知识的同时,还要重视从科学宝库中汲取思维营养,加强科学思维方法的训练。《中学生物理思维方法丛书》就是这样一套 授之以渔 的优秀辅导书。丛书每一册都以某一类或两三类思维方法为主线,在物理学史的恢宏长卷中,撷取若干生动典型的事例,把读者引入饶有兴趣的科学氛围中,然后围绕这些思维方法,就其在中学物理教学中的功能和表现,以及其在具体问题中的应用做较为深入、全面的挖掘,使读者能从物理学史和中学物理教学现实两方面较宽广的视野中,逐步领悟到众多思维方法的真谛。 丛书信息: ● 分析与综合 ● 守恒 ● 猜想与假设 ● 图示与图像 ● 模型 ● 等效 ● 对称 ● 分割与积累 ● 归纳与演绎 ● 类比 ● 求异 ● 数学
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两??世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书都是适合的。 特别是费定晖、周学圣版本题解,历经三十年风雨,三次改
本书是与康颖教授主编的"十二五"普通高等教育本科国家级规划教材《大学物理(第四版) ))配套的学习辅导书,包括力学、热学、电磁学、振动、波动、光学、狭义相对论、量于物理基础等内容.为了便于学习,各章按基本要求、主要内容、典型例题、习题分析与解答四部分编写.其中,例题具有一定的代表性和示范性,注重分析和启发;习题难易层次分明,涵盖知识点全面.本书给出了教材中全部习题的解答,解题过程思路清晰, 方法简捷,语言流畅,易读易懂.最后还有综合能力测试,供读者训练和自测.
《堪舆地理学(实证堪舆秘诀精解)》系作者将自己所研习和实战运用的三元、玄空、九星、易理等天文、地理诸家选吉、开门、放水、立向、打灶、催财、催丁、催官、葬法、镇风水一系列实用性、可操作性的方法、秘诀整理而成。 本书内容特点: 内容丰富:各门派开门、立向、催福、催贵等内容一览无遗: 解释明确:四季、时间、历法、河图、洛书、八卦、甲子等内容作详尽剖析,为读者解开迷惑; 简单实用:各门派的诀窍资料完整,案例分析详尽,为学者和研究者提供方便之门。 仅《堪舆地理学(实证堪舆秘诀精解)》一本便知趋吉避凶之道,只要读者研习有得,就能使您受到莫大的启发和鼓舞,足可惠己福人。
本书系统介绍了线性代数与解析几何的基本理论和方法,主要内容包括行列式、矩阵、空问解析几何与向量运算、n维向量、线性方程组、矩阵相似对角化、二次型、MATLAB简述与应用。本书注重代数与几何的有机结合,强调矩阵初等变换的作用,将数学建模思想融人教材,注重应用背景及实例的介绍,并精选了大量的例题和习题,便于学生自学。
本书编者依据线性代数的学科特征,并融入自己多年来的教学经验,详解教材每一章的学习目的和要求,使学生在学习时心中有数,有的放矢。此外,还包括疑难解惑,使学生对学习中遇到的难点能迎刃而解,便于掌握线性代数的实质;例题解析,其中有介绍基本概念和基本运算方法的计算题和证明题,有一题多解的开拓思路题,也有较灵活的综合题。
2016年,英国《自然》杂志公布了本年度产生重大影响的科学事件, 位于贵州的五百米口径球面射电望远镜(FAST)落成启用 位列其中,FAST是目前世界上*的单口径射电望远镜,预计在未来10年至20年,将保持世界一流天文观测设备的地位,在包括巡视宇宙中的中性氢,研究宇宙大尺度物理学,观测脉冲星,主导国际低频甚长基线干涉测量网,探测星际分子,搜索可能的星际通讯信号等方面,取得重要科学成果。本书将用通俗易懂的语言为你深度揭秘中国天眼FAST。
吉米多维奇的《数学分析习题集》是一本国际知 名的著作。该书 内容丰富,由浅入深,涉及的内容涵盖了《数学分析 》的全部命题。同 时,该书难题多,许多题目的难度已经超出对同学们 的要求,以至于许 多同学望而却步。为了帮助广大同学更好地掌握《数 学分析》的基本 概念,综合运用各种解题技巧和方法,提高分析问题 和解决问题的能 力,由毛磊、滕兴虎、寇冰煜、张燕、李静等编著的 《吉米多维奇数学分析习题全解(3)》以俄文第13版 为基础,对习题集中的5000道习题逐一进行 了解答。