内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
胡里克编著的《初等代数几何(第2版)》是代数几何的一个导引,其目的是给出代数几何的基本概念和方法,并用大量例题对它们进行解释,这可以让读者在一些补充资料的帮助下独立进行工作。《初等代数几何(第2版)》特意保持使用初等语言。书中一方面展开一般理论,另一方面则处理具体的例题和应用,并着重于这两者之间的相互作用和联系。 《初等代数几何(第2版)》适合大学数学系的本科生阅读参考,他们已经学过了代数和函数论的基础课程。《初等代数几何(第2版)》的新版做了重大修改,增添了许多新图和习题,所有习题都有解题提示。
本书系统介绍了线性代数与解析几何的基本理论和方法,主要内容包括行列式、矩阵、空问解析几何与向量运算、n维向量、线性方程组、矩阵相似对角化、二次型、MATLAB简述与应用。本书注重代数与几何的有机结合,强调矩阵初等变换的作用,将数学建模思想融人教材,注重应用背景及实例的介绍,并精选了大量的例题和习题,便于学生自学。
本书是与同济大学数学系编《线性代数》第五版配套的学习辅导书,主要面向使用该教材的读者。本书编者之一是《线性代数》第五版的编者,另一位编者在同济大学多年执教线性代数课程。 本书是在《线性代数》第四版辅导书的基础上修订而成的,修订时对原书中要求偏高的内容作了较大幅度的删节或改写,使它更贴近“工科类本科数学基础课程教学基本要求”。全书与教材一致分为六章,每章内容包括基本要求、内容提要、学习要点、释疑解难、例题剖析与增补、习题解答、补充习题(附答案和提示)等七个栏目。其中“释疑解难”显示出编者对课程内容的深刻理解和长期积累的丰富经验;“例题剖析与增补”充分开发出例题的内涵,并有助于读者掌握举一反三的学习方法;“习题解答”注重阐明解题的思想和方法,并作出规范解答。本书相对于教材有一
全书共分七章,分别为行列式、矩阵、线性方程组、矩阵的特征值、特征向量和方阵的对角化、二次型、线性空间与线性变换、数学实验。各章均配有一定数量的习题,并选编了多年来数学(一)考研试题。本书可作为高等学校教材,也可供考研复习使用。
本书通过简明的理论介绍与方法总结,以及对大量有代表性的典型例题进行分析、求解和评注,揭示了高等代数的解题方法与技巧。另外,书中给出了北大《高等代数》(第三版)教材中各章习题及补充题的解答;书末附录中提供了四套(四个学期)考试真题及解答。编写本书的目的在于帮助读者把握教学、学习和考试要求,巩固和加深对基本概念的理解,增强运算能力,提高分析问题、解决问题和应试能力。 本书可作为大学生学习高等代数课程的指导书,可供报考硕士研究生的读者以及有关教师及科技工作者参考。
该书编选了行列式、线性方程组、矩阵和二次型、向量空间及其线性变换、群、环、域、模、仿射空间等方面。书中含1938道习题并附有解答,数量多,内容丰富,由浅入深,部分题目难度大。不少题目是名家提供的,有些题目立意新颖,结构色质较为合理,证明题较多,题多难度大,涉及的知识点较多,需要读者多花费心思琢磨,但可以开阔学习者的视野,提升综合思考能力。本书知识点较多且比较难,可供高等院校设置线性代数课程的专业的师生教学时参考。
本书编者依据线性代数的学科特征,并融入自己多年来的教学经验,详解教材每一章的学习目的和要求,使学生在学习时心中有数,有的放矢。此外,还包括疑难解惑,使学生对学习中遇到的难点能迎刃而解,便于掌握线性代数的实质;例题解析,其中有介绍基本概念和基本运算方法的计算题和证明题,有一题多解的开拓思路题,也有较灵活的综合题。
本书是与《经济应用数学基础(二)·线性代数》(赵树螈主编,第四版,中国人民大学出版社)相配套的教学辅导用书。全书内容共分5章,每章5个版块,分别是“重点及知识点辅导与精析”“难点及典型例题辅导精析”“考点及考研真题辅导与精析”“课后习题解答”“同步自测题”。在对基本知识进行归纳、提炼和梳理的基础上,通过对典型例题及考研真题的详解与分析、解题方法的系统归纳,帮助读者深入掌握学习的重点、难点、易混淆的知识点及考研要点,对教材内容融会贯通,提高综合解题能力。 本书可作为高等院校文科和经管类专业线性代数课程的学习参考书及考研强化复习的指导书,也可作为教师的教学参考用书。
《伽罗瓦理论--天才的激情/现代数学基础》编著者章璞。 《伽罗瓦理论--天才的激情/现代数学基础》内容提要:这是一本专门讲述伽罗瓦理论的教材。内容包括伽罗瓦理论基本定理和多项式方程的根式可解性、伽罗瓦群的计算及其反问题,本书强调通过伽罗瓦对应,可将代数数域中的问题转化成群论的问题加以解决。作为这种思想的应用,证明了代数基本定理,解决了e和□的超越性及尺规作图的四大古代难题。为方便读者查阅,附录中详细梳理了所要用到的群、环、域方面的结论。每节配有充足的习题并包含提示。 本书可作为高等学校数学类各专业的教材,也可供其他相关专业参考。
本书是为综合型大学及师范院校非数学类理工科各专业编写的线性代数教材。全书共六章,分别是:行列式、矩阵、线性方程组、矩阵的特征值、二次型和数学实验。本书可供普通高等学校非数学类理工科专业学生使用,也可以作为相关专业爱好者的学习参考书。
《高等数学(上第3版)》是大学经济管理类(包括文科)的高等数学教材,列为武汉大学“十五”规划教材之一。 全书分上、下两册,共十四章。上册介绍一元函数的微积分学,包括函数的极限、连续、导数、不定积分、定积分、广义积分以及导数在经济学中的应用,定积分的应用等。下册介绍空间解析几何、二元(多元)函数的微积分学、无穷级数、常微分方程及差分方程等。本书在传统的经济类高等数学的基础上内容稍有拓宽,主要是加强了空间解析几何和无穷级数方面的内容。《高等数学(上第3版)》的*特色是:每一章都按时下流行的考试命题模式,配备一套针对本章内容的综合练习题。此外,在全书后,还配有两套综合全书内容的综合练习题。这些试题,既有深度,又有一定的难度。熟练地掌握这些试题的解题思路及证明方法,对将来考研将起到很好的桥梁作
?定位为普通大学信息与计算科学专业课程教材,入门起点低,只涉及基本的数论、抽象代数知识。?作为应用数学的一个重要且实用的分支,代数编码与密码的入门切入点是让学生掌握一些和当前计算机技术水平相适应的、具体的、 较好的纠错码体制和现代密码体制,以便在工作中能够使用。?全书共分三部分。部分是抽象代数基础,第四节和第五节讲解有限域和有限域上的多项式环,这是代数编码与密码的基础。 第二部分介绍纠错码理论,引进线性码、循环码、 BCH 码 和 RS 码。 第三部分介绍代数密码学:讲公钥密码,即介绍 RSA 密码体制和 ElGamal 密码体制;讲分组密码,主要介绍了高级加密标准 AES 和 IDEA 密码体制;第八章讲密钥管理;第九章讲数字签名和认证系统。