陈公宁教授是第6批博士生导师。 《陈公宁文集 解析函数插值与矩量问题》是《北京师范大学数学家文库》的第14部。 《陈公宁文集 解析函数插值与矩量问题》是《北京师范大学数学家文库》的第14部。 执教40多年,讲授数学系(含物理系)基础课程与选修课程多门,编教材2部,专著2部,发表学术论文70多篇。现为中国数学会会员,美国数学会会员,《Mathematical Reviews》评论员。学术研究内容主要是:算子理论与算子代数,矩阵值解析函数插值理论与应用,矩阵理论与应用。在全纯算子函数,有理插值,解析函数插值问题与矩量问题等方面多有建树。
This book contains 80 original research and review paperswhich are written by leading researchers and promising youngscientists, which cover a diverse range of multi- disciplinarytopics addressing theoretical, modeling and computational issuesarising under the umbrella of ""Hyperbolic Partial DifferentialEquations"". It is aimed at mathematicians, researchers in appliedsciences and graduate students.
This two-volume book is devoted to mathematicaltheory,numerics and applications of hyperbolic problems.Hyperbolicproblems have not only a long history but alsoextremely richphysical background.The development ishighly stimulated by theirapplications to Physics,Biology,and Engineering Sciences;inparticular,by the design ofeffective numerical algorithms.Due torecent rapiddevelopment of computers,more and more scientistsusehyperbolic partial differential equations andrelatedevolutionary equations as basic tools when proposingnewmathematical models of various phenomena and relatednumericalalgorithms. This book contains 80 original research and review paperswhichare written by leading researchers and promisingyoungscientists,which cover a diverse range of multidisciplinary topicsaddressing theoretical,modeling andcomputational issues arisingunder the umbrella of"Hyperbolic Partial Differential Equations".Itis aimed atmathematicians,researchers in applied sciences andgraduatestudents.
本书是关于不连续动力系统动力学及其流转换性理论的专著、本专著提供了研究动力系统网络动力学及其行为复杂性的数学基础。书中介绍的不连续动力系统中的障碍向量场理论将彻底改变人们在动力学系统中传统的思维方式;棱上动力学及其流转换复杂性理论是人们讨论动力学系统的低维网络通道吸引的数学基础;具有多值向量场的流对其边界、棱和顶点的跳跃流理论给小厂动力系统网络的“台球”理论的数学基础;动力系统的相互作用理论是动力系统网络中的普适性原理,并应用于动力系统同步。 本书可作为应用数学、物理、力学及控制领域的大学师生及科研人员的参考书。