云非圆球,山非圆锥,闪电不走直线.大自然形状的复杂性有不同的种类,不仅仅是程度上的不同.为了描写这些形状,伯努瓦?B.芒德布罗设计和发展了一种新的几何学??分形几何学.他的工作对本书论及的许多不同的领域都很重要.现在,这样的领域因许多积极的研究者而大为扩充,芒德布罗展示了分形几何学的根源及其新应用的深入概述.本书的以前几个版本受到高度评价,但这一版有更广泛和深入的覆盖范围,以及更多插图.
本书是我社正在开发的《美国数学会经典影印系列》中的一本,美国数学会的出版物在国际数学界享有很高声誉,出版了很多影响广泛的数学书。 十三五 期间计划引进的该学会的图书系列涵盖了代数、几何、分析、方程、拓扑、概率、动力系统等所有主要数学分支以及新近发展的数学主题。 本书源于以解析几何和代数几何为主题的PCMI暑期学校的一系列讲座。该系列讲座旨在介绍解析几何和代数几何中*进展背后所运用的高级技巧。讲座包含了许多说明性的例子、详细的计算和对所提出的主题的新观点,以便增强非专业人士对这些材料的理解。
方程组实数解的几何方法(影印版)
对齐性空间的研究使我们对微分几何和李群有了更深的了解。例如,在几何中一般性的定理和性质对于齐性空间也成立,并且在这个架构上通常更容易理解和证明。对于李群,相当多的分析或者开始于或者归结到齐性空间(通常是对称空间)上。多年来,对很多数学家来说,这本经典著作已经是、也会继续是这方面资料的标准来源。 作者首先对微分几何做了一个简洁、自足的介绍,然后细心处理了李群的理论基础,其陈述方式自1962年以来成为许多后续作者所采用的标准方式。这为引进和研究对称空间创造了条件,而这正是本书的核心部分。本书的结尾则按照Victor Kac的方法,通过C上单李代数的Killing-Cartan 分类和R上单李代数的Cartan分类,对对称空间进行了分类。 本书每章后面都配有丰富且实用的习题,且书后附有全部问题的解答或提示。在这一版中,作者做了一些