这是一本广受称赞的教科书,清晰地讲解了现代概率论以及度量空间与概率测度之间的相互作用。本书分两部分,部分介绍了实分析的内容,包括基本集合论、一般拓扑学、测度论、积分法、巴拿赫空间和拓扑空间中的泛函分析导论、凸集和函数、拓扑空间上的测度等。第二部分介绍了基于测度论的概率方面的内容,包括大数律、遍历定理、中心极限定理、条件期望、鞅收敛等。另外,过程一章 (第12章) 还介绍了布朗运动和布朗桥。 与前版相比,本版内容更完善,一开始就介绍了实数系的基础和泛代数中的一致逼近的斯通-魏尔斯特拉斯定理;修订和改进了几节的内容,扩充了大量历史注记;增加了很多新的习题,以及对一些习题的解答的提示。