本书是一部畅销欧美的数学手册,内容全面而丰富,涵盖分析学、代数学、几何学、数学基础、变分法与优化、概率论与数理统训、讨算数学与科学计算、数学史书中收录有大量的无穷级数、特殊函数、积分、积分变换、数理统计以及物理学基本常数的表格;此外还附有极为丰富的重要数学文献目录。
《GeoGebra与数学实验》分两部分,部分详细介绍动态工具GeoGebra的基本操作方法;第二部分是基于GeoGebra平台的数学实验,即运用该平台将数学的内容及相关问题从几何、代数两个方面呈现出来,运用技术手段描述数学问题,理解数学问题,解决数学问题,探究数学问题,揭示数学本质,展示数学智慧,体会数学价值,享受数学之美,了解数学艺术。GeoGebra平台能直观呈现小学、初中、高中乃至大学的所有数学基本内容,是发展学生数学素养的智慧平台。
本卷是这本《集合论导引》的开卷,分为三章,是后续两卷的基础。第1章主要是引进集合论的基本公理、基本概念、基本方法,并给出典型的可数集合的例子,包括自然数集合、整数集合、有理数集合以及彻底有限集合等。第2章主要是引进选择公理以及由此建立起来的基数运算律和一些典型组合实例。第3章专门引进实数集合并对它进行系统分析。本卷将建立一系列基本概念,为全书作铺垫。
本书以手册的形式涵盖了人们日常工作、学习所需用到的数学知识。内容包括算术、函数、几何学、线性代数、代数学、离散数学、微分学、无穷级数、积分学、微分方程、变分法、线性积分方程、泛函分析、向量分析与向量场、函数论、积分变换、概率论与数理统计、动力系统与混沌、优化、数值分析、计算机代数系统等,并专门设有数学常用表格章节,方便读者查阅。
本书介绍黎曼几何中的重要技巧和定理,为满足那些希望专门研究黎曼几何的学生,书中还包含大量关于较深论题的背景材料。本书还介绍了最新的研究问题。各种练习散布全书,帮助读者深入理解书中内容。本书是为数不多的整合了黎曼几何的几何和分析两方面内容的专著之一,适合熟悉张量和斯托克斯定理等流形理论的读者,可作为研究生一学年课程的教材。
本书是世界公认的《回归分析》标准教材(aleadingtextbookonregression)。不仅从理论上介绍了当今统计学中用到的传统回归方法,还补充介绍了尖端科学研究中不太常见的回归方法。难能可贵的是,作者有丰富的教学经验和实际应用经验,使得本书理论和应用并重,还给出实际应用中应该注意的问题。新版除利用Minitab,SAS,S-PLUS软件外,还融入了*流行的JMP软件和R软件,来阐释相关技术方法。配套资源很丰富,数据、教学PPT等可免费下载。
本书主要介绍分数阶傅里叶变换的发展历程、定义及性质,基于分数阶傅里叶变换的分数阶算子和分数阶变换,分数阶傅里叶域滤波器、以及线性调频信号的检测和参数估计问题;分数阶傅里叶域离散信号处理理论,包括分数阶傅里叶变换的离散算法、分数阶傅里叶域的 采样以及多抽样率滤波器组理论;分数阶傅里叶域随机信号处理理论;分数阶傅里叶变换在阵列信号处理、雷达、通信和图像处理中的应用;分数阶傅里叶变换的广义形式 线性正则变换。 本书可以作为相关研究人员的工具书和感兴趣读者的入门书籍,同时也是慕课 分数域信号与信息处理及其应用 的配套教材。
本卷是集合论的模型分析部分。在第一卷的基础上,本卷的主要任务是将逻辑植入集合论之中,并以此为基础实现三大目标:第一大目标是将同质子模型分析引入集合论,这是一种不同于组合分析的对无穷集合展开分析的基本方法;第二大目标则是建立集合论论域的具有典范作用的内模型??哥德尔可构造集论域,从而证明一般连续统假设和选择公理的相对相容性;第三大目标是建立集合论论域的具有典范意义的外模型??科恩的力迫扩张模型,从而证明连续统假设以及选择公理的相对独立性。这三大目标分为三章分别来实现。在一定意义上讲,每一章体现一种基本方法。这些基本方法是从事集合论研究的最基本的方法。
书系统阐述线性模型的基本理论、方法及其应用,其中包括理论与应用的近期发展。全书共10章。第1章通过实例引进各种线性模型。第2章讨论矩阵论方面的补充知识。第3章讨论多元正态及有关分布。从第4章起,系统讨论线性模型统计推断的基本理论和方法,包括最小二乘估计、假设检验、置信域、预测、线性回归模型、方差分析模型、协方差分析模型、线性混合效应模型,以及由线性模型衍生的几类分类响应变量模型。为了做到模型理论和数据分析实践相结合,本书提供了各种方法详细的R语言计算程序和数据可视化的程序,并配有大量典型案例和相当数量的习题。本书取材新颖、内容丰富、阐述严谨、推导详尽、重点突出、思路清晰、深入浅出、富有启发性,便于教学与自学。
《10000个科学难题 数学卷》是*、科学技术部、中国科学院和国家自然科学基金委员会联合组织开展的 10000个科学难题 征集活动的重要成果,书中的题目均由国内国际知名的数学专家撰写。书中收集了有关数学很多分支学科及数学的应用等方面的大量问题,以及当今一些重要的数学问题。
本书是由Fields 奖得主T. Gowers 主编、133 位著名数学家共同参与撰写的大型文集。全书由288篇长篇论文和短篇条目构成,目的是对20世纪最后一二十年纯粹数学的发展给出一个概览,以帮助青年数学家学习和研究其最活跃的部分,这些论文和条目都可以独立阅读。原书有八个部分,除第Ⅰ部分是一个简短的引论、第四部分是全书的“终曲”以外,全书分为三大板块,核心是第N部分“数学的各个分支”共26篇长文,介绍了20世纪最后一二十年纯粹数学研究中最重要的成果和最活跃的领域,第Ⅲ部分“数学概念”和第Ⅴ部分“定理与问题”都是为它服务的短条目。第二个板块是数学的历史,由第Ⅱ部分“现代数学的起源”(共7篇长文)和第Ⅵ部分“数学家传记”(96位数学家的短篇传记)组成。第三个板块是数学的应用,即第四部分“数学的影响”(14篇长文章)。作为全
本书是在复分析领域产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美。书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。
本书由数学通俗文章和讲话的讲稿等组成, 此外还有一篇关于数学史的翻译文章和一个座谈会实录. 数学通俗文章的主题有: 数学概述, 数学的意义;对称; 几何??从熟悉到陌生; 基础数学的一些过去和现状; 数学??简单与高深; 朗兰兹纲领寻根之旅; 黎曼猜想??引无数英雄竞折腰; 简说代数; 表示, 随处可见; 几何表示论; 卡兹旦-路兹蒂格理论: 起源、发展、影响和一些待解决的问题. 翻译文章是韦伊的“数学史: 为什么, 怎么看”. 讲话的讲稿主要包含作者在一些纪念、庆祝、任职、卸任等公开场合上的讲话讲稿. 座谈会实录说的是2014 年作者与怀化学院本科生座谈的记录.
自然图像、高光谱图像、医学图像、视频以及社交网络数据本质上都属于多模态数据,张量是多模态数据的自然表示形式. 近十余年来,张量学习的研究引起了国内外研究者的广泛关注,并取得了一批非常优秀的成果,被广泛应用于机器学习、模式识别、图像处理、计算机视觉、数据挖掘以及社交网络分析等领域。本书从张量的基本概念和代数运算出发,基于多元统计分析和小样本学习理论的两条主线,详细归纳和总结了国内外研究者在张量分解、张量子空间学习、有监督张量学习、带噪声和缺失数据的张量子空间学习、张量子空间学习在图像补全和去噪中的应用、张量子空间学习在数据挖掘中的应用等方面取得的最新成果。
本书前5章讲述三角范畴和导出范畴的基本理论;第6~11章讨论了Frobenius范畴的稳定范畴、Gorenstein同调代数、奇点范畴、Auslander-Reiten三角与Serre对偶、三角范畴的t-结构与粘合等专题。附录提供了全书所要用到的范畴论方面的概念和结论。每章均配有习题并包含提示。本书强调三角范畴与Abel范畴之间的比较和转化研究。
本卷是在前两卷的基础上对集合论保证无穷集合存在的无穷公理的层次分析。这种分析既包含组合分析,也包含逻辑分析;既包含内模型分析,也包含外模型分析;归根结底是揭示各种高阶无穷公理对整个集合论论域的影响,尤其是对实数集合的影响。因此,第三卷的第1章侧重于大基数的组合分析、逻辑分析以及内模型构造;第2章侧重于在大基数上构造各种各样的具有典范意义的力迫扩张,从而解决包括奇异基数假设在内的一些长期遗留问题的独立性问题;第3章侧重于分析高阶无穷对实数子集合正则性的影响。
人类发明数学公式,来描绘浩瀚宇宙和人生百态。世界的繁华秀丽,映衬出符号公式的简洁之美。爱因斯坦的质能方程和杨振宁的规范场,摸索出宇宙 游戏的规则;费马大定理和欧拉恒等式,揭示出宇宙变化背后的数学世界;从凯利公式到贝叶斯定理,逐渐 预测人类行为;蝴蝶效应的洛伦兹方程组和三体问题,则告诉我们数学的界限。 量子学派倾心打造《公式之美》,包含23个普遍、深刻、实用的公式,书写天才们探索自然和社会的辉煌历史。
本书是现代图论教学中被广泛采用的研究生教材,它在前4版的基础上进行了进一步扩充和更新。其叙述的方式非常有特色:先解释定理的意义、证明的思路,并对主要思路进行描述,再提供详尽严格的证明,从而阐述图论的核心内容,让读者容易地了解这个领域的精髓所在。特别地,对若干图论中的重要定理给出多种证明。 本书囊括了当代图理论中最重要的专题,对每个专题从基本知识,到主要的结果和技巧进行介绍,并指出当前的研究主流和方向,是不可多得的兼顾教学和研究的专著。
本书介绍了物理学科研工作所需的数学知识和相应的数学基础,包括10章内容,分别是变分法、希尔伯特空间、二阶线性常微分方程、贝塞尔函数、狄拉克δ函数、格林函数、范数、积分方程、数论在物理逆问题中的应用和任意维空间的基本方程。本书内容与本科阶段己经学过的数理方法衔接,并尽可能地反映最新的科研成果。本书对概念的说明与公式的推导力求详尽全面,内容叙述清楚,便于读者学习。各章末尾大量的习题有助于读者巩固和扩展正文中学到的知识内容。
本书系统介绍了生物数学的基本建模思路、研究方法、数据处理和数值实现方法。简明扼要地阐述了数学与生物学交叉融合的必然性与重要性,以及生物数学在种群生态学、传染病疫情预测预警、药物设计、生物资源管理与有害生物控制、细胞与分子生物学等领域的经典应用,介绍了数据与生物数学模型对接分析中常用的三种参数估计方法。为了突出生物数学是如何服务于突发重大公共卫生事件或传染病防控的,实例研究中给出了2009年封校策略与甲型H1N1流感的控制、2014年广州登革热疫情大暴发关键因子分析、雾霾防控与流感样病例数据的多尺度模型分析。本书各章均配备了习题。为了方便读者和本书的完整性,第12章给出了本书需要用到的各种数学基础知识。
《线性系统理论(第三版) 下册》系统地阐述了以状态空间方法为主的线性系统的时间域理论。《线性系统理论(第三版) 下册》共12章:第1章介绍与《线性系统理论(第三版) 下册》密切相关的一些数学基础知识;第2章介绍线性系统的数学描述;第3~5章阐述线性系统的分析理论,分别介绍线性系统的运动分析、能控性和能观性分析以及稳定性分析;第6~10章阐述线性系统的设计理论,分别介绍线性系统的极点配置和特征结构配置、镇定与渐近跟踪、线性二次型*优控制、解耦控制、状态观测器等设计问题;第11章概括性地介绍离散线性系统理论;第12章介绍鲁棒性的概念和几个基本的鲁棒控制问题。