本书全面介绍了算法的数学分析中所涉及的主要技术。涵盖的内容来自经典的数学课题(包括离散数学、初等实分析、组合数学),以及经典的计算机科学课题(包括算法和数据结构)。本书的重点是“平均情况”或“概率性”分析,书中也论述了“最差情况”或“复杂性”分析所需的基本数学工具。 本书 版为行业内的经典著作,本版不仅对书中图片和代码进行了更新,还补充了新章节。全书共 9 章, 章是导论 ;第 2~5 章介绍数学方法 ;第 6~9 章介绍组合结构及其在算法分析中的应用。除每章包含的大量习题以及参考文献外,本书特设配套免费学习网站,为读者提供了很多关于算法分析的补充材料,包括课件和相关网站的链接,帮助读者提高学习兴趣,完成更深入的学习。
本书深入揭示了小样本多元数据的实质和特点,对多元回归法和现代多种建模方法进行了剖析、比较、验证和拓展,提出了小样本多元数据分析的理论和方法,构建了从不同侧面克服小样本多元数据建模困难的完整的建模方法体系。 全书共8章,包括:绪论,多元线性回归分析,偏二乘回归分析,方差分量线性模型,自变量筛选和综合特征参数模型,贝叶斯统计分析方法,统计学习理论与支持矢量机,其他分析方法的探讨。 本书可供高等院校飞行器设计、系统工程、管理科学与工程、数量经济学和有关专业的本科生及研究生阅读,也可供研究人员、工程技术人员及有关人员参考。
《反应扩散方程引论(第2版)》内容简介:在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。叶其孝、李正元、王明新、吴雅萍编著的《反应扩散方程引论(第2版)》详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解《反应扩散方程引论(第2版)》的内容。 《反应扩散方程引论(第2版)》可作为高等院校数学、应用数学或其他有关专业的大学生、研究生的教材或教师的教学参考书,也可供相关研究领域的科研人员和工程技术人员参考。
美国萨奥尔编著的《数值分析》是一本的数值分析教材,书中不仅全面论述了数值分析的基本方法,还深入浅出地介绍了计算机和工程领域使用的一些数值方法,如压缩、前向和后向误差分析、求解方程组的迭代方法等。每章的“实例检验”部分结合数值分析在各领域的具体应用实例,进一步探究如何更好地应用数值分析方法解决实际问题。此外,书中含有一些算法的matlab实现代码,并且每章都配有大量难度适宜的习题和计算机问题,便于读者学习、巩固和提高。
本书是John A. Richards教授和Xiuping Jia博士经典著作Remote Sensing Digital Image Analysis(第4版)中译本。全书除章介绍遥感图像数据源及特性外,基本包含两大方面内容:方面包括第2~7章,主要涉及遥感图像处理的基本技术和方法,如校正和配准、解译、增强、变换等;第二方面包括第8~13章,主要涉及遥感图像处理的应用技术和方法,如监督/非监督分类、特征减少、多源/多传感器处理、高光谱处理等。该书的特点是以易于读者理解和应用为宗旨,在侧重不同处理技术和方法的同时,充分结合了当前的新理论、新技术和新方法。 本书是从事遥感领域研究的高年级本科生、研究生的一本全面、完整、详细的教材,也是广大科技工作者自学和应用遥感技术的经典参考之作。
《测度论(英文版)》综合性强,清晰易懂。全面介绍了测度和积分,重在强调学习分析和测度必需的和相关的一些话题。前五章讲述了抽象测度和积分,通过这五章,读者可以说精通积分知识;第六章讲述微分知识,包括Rd上变量的处理。《测度论(英文版)》的特点是初步并且全面的讲述局部紧Hausdorff空间上的积分知识、Polish空间上的解析和Borel子集和局部紧群上的Haar测度。书中提供了学习目前感兴趣的领域,尤其是调和分析和概率论的工具。每章末都附有具有代表性的习题,从常规题型到扩展训练都有,并且对较高难度的习题附有提示。
Thephrase"harmonicanalysisiphasespace"isaconciseifsomewhatinadequatenamefortheareaofanalysisoRthatinvolvestheHeisenberggroup,quantization,theWeyloperationalcalculus,themetaplecticrepresenta-tion,wavepackets,andrelatedconcepts:itismeanttosuggestanalysisotheconfiguratiospaceRdonebyworkingithephasespaceRxRn.Theideasthatfallunderthisrubrichaveoriginatediseveraldifferentfidds——Fourieranalysis,partialdifferentialequations,mathematicalphysics,representationtheory,andnumbertheory,amongothers.
本书提出了无限维动力系统、偏微分方程、数学物理交叉学科尖端领域的处理某些议题的新方法。书中的部分着重介绍了作者在达布变换和同宿轨道以及建立可积偏微分方程梅尔尼科夫积分方面取得的成果。第二部分则专注第二作者将达布变换应用于物理领域的工作。本书的特点在于作者及合作者发展的用达布变换建立可积系统中同宿轨道、梅尔尼科夫积分及梅尔尼科夫向量的崭新方法。可积系统(也叫孤立子方程)是有限维可积哈密顿系统在无限维的对应物,而上述所说的崭新方法所展示的是无限维相空间结构。本书可供数学、物理及其他相关学科领域的高年级本科生,研究生及该领域的专家参考。