《希尔伯特空间及其应用导论(第3版)(英文版)》无论是学生还是科研人员,都将从《希尔伯特空间及其应用导论(第3版)(英文版)》的特别表达中受益。《希尔伯特空间及其应用导论(第3版)(英文版)》在原来版本的基础上做了不少改动,新增加了一部分讲述Sobolev空间,展开讲述了有限维赋范空间,有关小波的一章做了全面更新。并且包括了积分和微分方程、量子力学、化、变分和控制问题、逼近理论问题、非线性不稳定性和分岔理论的多种应用。在众多希尔伯特空间的书中,《希尔伯特空间及其应用导论(第3版)(英文版)》在讲述勒贝格积分方面独具特色。学习泛函分析和希尔伯特理论的老师和学生都十分推崇这本书作为教材或者参考书。
本书系统讨论再生核理论及其在数学领域中的应用,内容包括再生核的一般性质。半内积空间的再生核、W2m空间的再生核、解析函数空间再生核的基本理论和构造方法,以及再生核在样条函数、插值与逼近、算子方程中的应用,同时还介绍了再生核空间中的逼近和算子理论等方面的基本内容,本书的主要特色:将W2m严空间的内积和再生核理论纳入半内积空间理论的统一框架;用Green函数方法统一讨论W2m严空间的再生核的构造;对几类常系数微分算子所对应的再生核进行了详细讨论,并探讨了再生核理论中的GrPen函数方法与其他方法的联系;介绍了再生核与样条函数的若干联系。 本书可作为高等院校数学专业高年级大学生、研究生和教师的教材或教学参考书,也可供工科相关专业的研究生和工程技术人员参考。
Except for minor modifications, this monograph represents the lecture notes of a course I gave at UCLA during the winter and spring quarters of 1991. My purpose in the course was to present the necessary background material and to show how ideas from the theory of Fourier integral operators can be useful for studying basic topics in classical analysis, such as oscillatory integrals and maximal functions. The link between the theory of Fourier integral operators and classical analysis is of course not new, since one of the early goals of microlocal analysis was to provide variable coefficient versions of the Fourier transform. However, the primary goal of this subject was to develop tools for the study of partial differential equations and, to some extent, only recently have many classical analysts realized its utility in their subject.
本书系统讲解偏微分方程及其定解问题的求解方法,通过大量实例讨论偏微分方程解的性质,特别强调傅里叶级数在求解边值问题中的作用。书中配有丰富的例题与习题,还采用“专题问题”较为系统地研究某个具体问题,补充和扩展了正文内容。 本书内容丰富、推导严密,包含大量物理背景,为理解和掌握偏微分方程提供了有效途径。本书可作为高等院校数学及相关专业学生的偏微分方程课程教材,同时也可作为工程技术人员、科技工作者的参考书。
《小波分析方法及其应用》以研究生课程“小波理论”的教学内容为基础,深入浅出地阐述了小波分析的基本理论和方法。力求使读者从原理上掌握相关算法,并能用来解决实际问题。全书共分11章,主要包括傅里叶级数和傅里叶变换、窗口傅里叶变换、小波变换、小波框架、多分辨率分析与正交小波、Mallat算法、具有消失矩和紧支撑的正交小波的构造、双正交小波及其构造、提升小波、正交小波包、区间小波和多小波。《小波分析方法及其应用》内容丰富、重点突出,力争做到由浅入深、循序渐进。《小波分析方法及其应用》可作为理工科本科生和研究生学习小波分析的教材,也可供对小波分析感兴趣的研究人员和工程技术人员学习参考。
本书是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。 全书从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。
《希尔伯特空间及其应用导论(第3版)(英文版)》无论是学生还是科研人员,都将从《希尔伯特空间及其应用导论(第3版)(英文版)》的特别表达中受益。《希尔伯特空间及其应用导论(第3版)(英文版)》在原来版本的基础上做了不少改动,新增加了一部分讲述Sobolev空间,展开讲述了有限维赋范空间,有关小波的一章做了全面更新。并且包括了积分和微分方程、量子力学、化、变分和控制问题、逼近理论问题、非线性不稳定性和分岔理论的多种应用。在众多希尔伯特空间的书中,《希尔伯特空间及其应用导论(第3版)(英文版)》在讲述勒贝格积分方面独具特色。学习泛函分析和希尔伯特理论的老师和学生都十分推崇这本书作为教材或者参考书。