Except for minor modifications, this monograph represents the lecture notes of a course I gave at UCLA during the winter and spring quarters of 1991. My purpose in the course was to present the necessary background material and to show how ideas from the theory of Fourier integral operators can be useful for studying basic topics in classical analysis, such as oscillatory integrals and maximal functions. The link between the theory of Fourier integral operators and classical analysis is of course not new, since one of the early goals of microlocal analysis was to provide variable coefficient versions of the Fourier transform. However, the primary goal of this subject was to develop tools for the study of partial differential equations and, to some extent, only recently have many classical analysts realized its utility in their subject.
本书系统地介绍了补偿列紧方法在单个守恒律方程和一些双曲守恒律系统中的应用。主要内容包括:单个守恒律方程的解,二次流系统、LeRoux系统、等熵气体动力学系统、一维欧拉方程组和弹性力学系统等双曲守恒律系统的解以及弹性力学系统的解,双曲守恒律系统的零松弛现象。
《统一无穷理论》根据理想计数器模型,综合运用三维视野(自然数数值维、编码长度维和∞的可达性维),指出传统自然数集概念和层次无穷理论的局限性,提出完整的自然数集概念和统一无穷理论:①肯定自然数的二重性(内蕴性和排序性)和无穷的双相性(潜无穷和实无穷并存)。②指出潜无穷过程只能生成由有穷自然数组成的开放序列,它不是无穷集合;实无穷过程可生成由所有自然数组成的无穷集合,包括有穷自然数、趋近无穷自然数和无穷大。③断定完整的自然数集和单位区间实数集等势,2∞=∞是∞的基本性质,∞和无穷小δ=1/∞存在。④提出数的理想模型和规范模概念,证明数和无理数都是无穷集,得到了数的判定定理。 《统一无穷理论》是用计算机科学原理和方法论证数学基础问题的初次尝试,重点在于阐述统一无穷理念,适于研究无穷问题
《希尔伯特空间及其应用导论(第3版)(英文版)》无论是学生还是科研人员,都将从《希尔伯特空间及其应用导论(第3版)(英文版)》的特别表达中受益。《希尔伯特空间及其应用导论(第3版)(英文版)》在原来版本的基础上做了不少改动,新增加了一部分讲述Sobolev空间,展开讲述了有限维赋范空间,有关小波的一章做了全面更新。并且包括了积分和微分方程、量子力学、化、变分和控制问题、逼近理论问题、非线性不稳定性和分岔理论的多种应用。在众多希尔伯特空间的书中,《希尔伯特空间及其应用导论(第3版)(英文版)》在讲述勒贝格积分方面独具特色。学习泛函分析和希尔伯特理论的老师和学生都十分推崇这本书作为教材或者参考书。
《小分子药物的生产制备与化学全合成路线手册》共包含目前国外药品市场上最的小分子药物150余个。针对每一个药物分子,《小分子药物的生产制备与化学全合成路线手册》全面而系统地介绍了其化学结构相关信息和化学全合成路线。对参与反应的起始原料,中间体,反应产物都给出了详细的化学结构。每一步化学合成反应都给出了详细的化学试剂、反应条件、文献出处。《小分子药物的生产制备与化学全合成路线手册》所介绍的合成路线可从一个侧面反映出入类目前药物合成的最高水准。全书内容简洁,通俗易懂,具有很强的实用性又有较高的学术价值。
这是由数学大师、菲尔兹暨沃尔夫奖得主Hormander撰写的一部经典的数学著作。作者用统一的观点处理多复变的基本内容,包括单复变解析函数、多复变函数的基本性质、多复变函数在交换巴拿赫代数中的应用、e算子的存在性定理和L2方法、Stein流形、解析函数的局部性质以及Stein流形上的凝聚解析层等7章内容,最为精彩的是关于e算子的L2方法的介绍,其叙述方式至今依然被奉为范本。全书每章都有注记,介绍相关知识点的发展历史等。 本书可作为高等院校数学系研究生教材和相关研究人员的参考书。