微积分作为整个数理知识体系的基石,不仅对后续诸多数理知识体系的研习具有基础性的意义,而且微积分知识体系自身就为认识世界提供了系统的思想与方法。 《微积分讲稿:高维微积分》主要针对向量值映照建立微分学与积分学,另包括级数。高维微分学主要包括:点列的极限、向量值映照的极限、向量值映照的可微性与导数、多元函数的分析性质、多元函数的无限小分析方法、多元函数与向量值映照的有限增量公式与估计、隐映照定理及其应用、逆映照定理及其应用等。高维积分学主要包括:曲线、曲面上积分的建立、闭方块上Riemann积分的Darboux分析与Lebesgue定理、Fubini定理与体积分换元公式、广义积分与含有参变量的积分、Gauss-Ostrogradskii公式、Green公式、Stokes公式与场论基础等。级数主要包括:数项级数、函数项级数、幂级数、Fourier级数等。 《微
本书力求对分数阶微分方程的差分方法做个简明介绍。本书分为6章。章介绍了4种分数阶导数的定义。第2章讨论求解时间分数阶慢扩散方程的有限差分方法。第3章研究时间分数阶波方程的有限差分方法。第4章考虑求解空间分数阶偏微分方程的有限差分方法。第5章关心求解一类时空分数阶微分方程的有限差分方法。第6章介绍求解一类时间分布阶微分方程的有限差分方法。
During the latter part of the seventeenth century the new mathe-matical analysis emerged as the dominating force in mathematics. It is characterized by the amazingly successful operation with infinite processes or limits. Two of these processes, differentiation and inte- gration, became the core of the systematic Differential and Integral Calculus, often simply called "Calculus,asic for all of analysis. The importance of the new discoveries and methods was immediately felt and caused profound intellectual excitement. Yet, to gain mastery of the powerful art appeared at first a formidable task, for the avail-able publications were scanty, unsystematic, and often lacking in clarity. Thus, it was fortunate indeed for mathematics and science in general that leaders in the new movement soon recognized the vital need for writing textbooks aimed at making the subject ac-cessible to a public much larger than the very small intellectual elite of the early days. One of the greatest mathematicians of modern time
自从有了微积分,就有了微分表与积分表。有了具体的函数来求出其导数往往不是很困难,以致微分表常常不为人们所重视;而有了具体的函数来求其积分就不是这样了,有的也许可以容易地求出来,但大量的积分不是轻易求得出来的,于是积分表就一本一本不断地出版,从简单的到复杂的,在国外尤其是这样。由于自然科学和工程技术的不断发展,新的问题层出不穷,不断地提出各式各样的求积分的问题,于是过几年就会有新版的积分表出现,以供自然科学、工程技术和社会科学工作者使用。 我们参考了外尤其是国外一些新版的积分表和数学手册,如D.Zwillinger 主编的《Standard Mathematical Tableland Formulae》,J?J?图马和R.A?沃尔什主编的《工程数学手册》,I.S.Gradshteyn和I.M.Ryzhik主编的《Table of Integrals,Series,and Products》等,并广泛地征求了自然科学和工程
本书第四版对2004年第三版的内容作了全面细致的修订,并补充了第三版出版以来不等式研究的新的重要成果,充分反映了20世纪以来,特别是20世纪90年代以来不等式理论和方法的进展。全书共分17章,包含了美国数学评论(MR)2000主题分类中所有关于不等式论题的40个三级分类项目,还包括了外历年来大、中学生各类数学竞赛和研究生入学考试中所出现的新的不等式,以及工程技术问题中常用的不等式,所收录的不等式增加到6千多个,第四版还总结了不等式的常用证法55种,提出了212个未解决或值得进一步研究的问题。由于不等式在数学各个领域和科学技术中都是不可缺少的基本工具,加上本书起点低,因而本书的读者面是非常广泛的,各种不同专业水平的读者,不论是大中学师生,数学研究者,还是工程技术人员,都可以从中找到各自感兴趣的有用材料和研究课题。
全书共分八章,、二、四章是基础知识,系统地介绍了曲线论和曲面论。第三章等距曲线是为解决凸轮型线设计问题而设的。第五章论述齿轮啮合问题。其余三章论述曲线的拟合与设计、曲面的相交与展开、曲面的拟合与设计。本书的着重点在于数学模型的建立。本书可供机械制造等方面的工程技术人员以及应用数学工作者参考,也可作为高等院校有关专业的教材。
自从有了微积分,就有了微分表与积分表。有了具体的函数来求出其导数往往不是很困难,以致微分表常常不为人们所重视;而有了具体的函数来求其积分就不是这样了,有的也许可以容易地求出来,但大量的积分不是轻易求得出来的,于是积分表就一本一本不断地出版,从简单的到复杂的,在国外尤其是这样。由于自然科学和工程技术的不断发展,新的问题层出不穷,不断地提出各式各样的求积分的问题,于是过几年就会有新版的积分表出现,以供自然科学、工程技术和社会科学工作者使用。我们参考了外尤其是国外一些新版的积分表和数学手册,如D.Zwillinger主编的《StandardMathematicalTablelandFormulae》,J?J?图马和R.A?沃尔什主编的《工程数学手册》,I.S.Gradshteyn和I.M.Ryzhik主编的《TableofIntegrals,Series,andProducts》等,并广泛地征求了自然科学和工程技术领域专
一个运动质点位置函数的一阶导数表示速度,二阶导数表示加速度,那么分数阶导数的物理意义又是什么呢?分数阶导数是因何而产生,它对现代分析学在物理学的应用产生什么冲击,在将来又有什么发展?《物理及工程中的分数维微积分》二卷本将为你提供一个详细诠释。《物理及工程中的分数维微积分(靠前卷数学基础及其理论)(精)》(作者尤查金)介绍分数维微积分的数学基础和相应的理论,为这个现代分析学中的重要分支提供了详细而又清晰的分析与介绍。第Ⅱ卷是应用篇,讲述了分数维微积分在物理学中的实际的应用。在湍流与半导体、等离子与热力学、力学与量子光学、纳米物理学与天体物理学等学科应用方面,本书给读者展示一个全新的处理方式和新锐的视角。《物理及工程中的分数维微积分(靠前卷数学基础及其理论)(精)》适合于对概率和统计、数学建
本书针对各类具有多尺度特性的问题给出简化数学处理方法(平均化和均匀化),该方法可用于求解偏微分方程、微分方程、常微分方程以及Markov链。全书共分三部分,部分为背景资料;第二部分为扰动展开,给出此类问题的共性;第三部分阐述了一些证明扰动方法的理论。每章结束部分的讨论和文献目录中均对本章的一些结论进行了推广和扩展,并附上参考文献。除章外,所有章节均提供相应练习。本书既可作为高等院校本科和研究生,也可作为教师、工程技术人员和业余爱好者的自学用书。