本书是本科生的微积分教学用书,主要内容为:牛顿运动学基本定律(开篇),向量代数,天体力学简介,线性变换,微分形式和微分演算,隐函数反函数定理,重积分演算,曲线曲面积分,微积分基本定理,经典场论基本定理,爱因斯坦狭义相对论简介。本书特别注意数学与物理、力学等自然科学的内在联系和应用。作者在理念导引、内容选择、程度深浅、适用范围等方面都有相当周密的考虑。从我们重点大学的教学角度看,本书的难易程度与物理、力学和电类专业数学课的微积分相当,而思想内容则要深刻和生动些,因此适于用作这些专业本科生的教科书或学习参考书。
微积分作为整个数理知识体系的基石,不仅对后续诸多数理知识体系的研习具有基础性的意义,而且微积分知识体系自身就为认识世界提供了系统的思想与方法。 《微积分讲稿:高维微积分》主要针对向量值映照建立微分学与积分学,另包括级数。高维微分学主要包括:点列的极限、向量值映照的极限、向量值映照的可微性与导数、多元函数的分析性质、多元函数的无限小分析方法、多元函数与向量值映照的有限增量公式与估计、隐映照定理及其应用、逆映照定理及其应用等。高维积分学主要包括:曲线、曲面上积分的建立、闭方块上Riemann积分的Darboux分析与Lebesgue定理、Fubini定理与体积分换元公式、广义积分与含有参变量的积分、Gauss-Ostrogradskii公式、Green公式、Stokes公式与场论基础等。级数主要包括:数项级数、函数项级数、幂级数、Fourier级数等。 《微
微积分作为整个数理知识体系的基石,不仅对后续诸多数理知识体系的研习具有基础性的意义,而且微积分知识体系自身就为认识世界提供了系统的思想与方法。 《微积分讲稿:高维微积分》主要针对向量值映照建立微分学与积分学,另包括级数。高维微分学主要包括:点列的极限、向量值映照的极限、向量值映照的可微性与导数、多元函数的分析性质、多元函数的无限小分析方法、多元函数与向量值映照的有限增量公式与估计、隐映照定理及其应用、逆映照定理及其应用等。高维积分学主要包括:曲线、曲面上积分的建立、闭方块上Riemann积分的Darboux分析与Lebesgue定理、Fubini定理与体积分换元公式、广义积分与含有参变量的积分、Gauss-Ostrogradskii公式、Green公式、Stokes公式与场论基础等。级数主要包括:数项级数、函数项级数、幂级数、Fourier级数等。 《微
实用逻辑是形式逻辑的深化和发展。它一方面要系统地阐明形式逻辑的基本原理,另一方面要侧重阐明如何把这些基本原理运用到实际工作和生活当中去。本书坚持理论性,突出实用性,强化趣味性,兼顾普及性。全书体系完整,简明扼要,深入浅出,趣味盎然,适合高等院校各文种专业教学及各级党校、干部培训之用。
实用逻辑是形式逻辑的深化和发展。它一方面要系统地阐明形式逻辑的基本原理,另一方面要侧重阐明如何把这些基本原理运用到实际工作和生活当中去。本书坚持理论性,突出实用性,强化趣味性,兼顾普及性。全书体系完整,简明扼要,深入浅出,趣味盎然,适合高等院校各文种专业教学及各级党校、干部培训之用。
In this volume, we have collected lecture notes by M. C. Lopes concerning the boundary layers of inpressible fluid flow; by C..1. Xu on the micro-local analysis and its applications to the regularities of kiic equations; by Y. X. Zheng on the weak solutions of variaUonal wave equation from liquid crystals, and by P. Zhang and Z. R Zhang on the free boundary problem of Euler equations. In addition, we also included the notes by E Nier on the hypoelliptidty of Fokker-Planck operator and Witten-Laplace operator. We hope that the publication of these lecture notes may provide valuable references and up-to-date descriptions of current developments of various related research topics, that will benefit many young researchers or graduate students.
自从有了微积分,就有了微分表与积分表。有了具体的函数来求出其导数往往不是很困难,以致微分表常常不为人们所重视;而有了具体的函数来求其积分就不是这样了,有的也许可以容易地求出来,但大量的积分不是轻易求得出来的,于是积分表就一本一本不断地出版,从简单的到复杂的,在国外尤其是这样。由于自然科学和工程技术的不断发展,新的问题层出不穷,不断地提出各式各样的求积分的问题,于是过几年就会有新版的积分表出现,以供自然科学、工程技术和社会科学工作者使用。我们参考了外尤其是国外一些新版的积分表和数学手册,如D.Zwillinger主编的《StandardMathematicalTablelandFormulae》,J?J?图马和R.A?沃尔什主编的《工程数学手册》,I.S.Gradshteyn和I.M.Ryzhik主编的《TableofIntegrals,Series,andProducts》等,并广泛地征求了自然科学和工程技术领域专
李群和微分流形对于研究非线性微分方程的性质和求解有重要意义。本书系统论述李群和微分方程不变群的基本理论,还介绍了微分流形的基本知识。本书内容精练,叙述严谨,只要具有线性代数、微分方程和微分几何的基本知识就可阅读。书中每章后附有数量的习题,这有助于理解本书的内容。读者对象:高等院校数学专业、应用数学专业和理论物理专业的研究生,数学系高年级的本科生。
《偏微分方程的有效动力学(英文)》是国外数学著作原版系列中的一本。《偏微分方程的有效动力学(英文)》主要介绍几类重要的偏微分方程及其动力系统的动力学研究成果。《偏微分方程的有效动力学(英文)》系统地介绍了动力系统动力学的研究方法和作者近期的研究成果。
本书第四版对2004年第三版的内容作了全面细致的修订,并补充了第三版出版以来不等式研究的新的重要成果,充分反映了20世纪以来,特别是20世纪90年代以来不等式理论和方法的进展。全书共分17章,包含了美国数学评论(MR)2000主题分类中所有关于不等式论题的40个三级分类项目,还包括了外历年来大、中学生各类数学竞赛和研究生入学考试中所出现的新的不等式,以及工程技术问题中常用的不等式,所收录的不等式增加到6千多个,第四版还总结了不等式的常用证法55种,提出了212个未解决或值得进一步研究的问题。由于不等式在数学各个领域和科学技术中都是不可缺少的基本工具,加上本书起点低,因而本书的读者面是非常广泛的,各种不同专业水平的读者,不论是大中学师生,数学研究者,还是工程技术人员,都可以从中找到各自感兴趣的有用材料和研究课题。
本书以一些模型问题为背景,借助于数学软件Maple,Mathematica及MATLAB,利用符号运算、图像表示和数值解法等手段,系统地介绍了(线性与非线性)微分方程的基本概念和基本方法。通过40多个实际模型的讨论,使读者对建模、求解、分析解所反映的性质这一过程进行全面的了解。利用Maple,Mathematica及MATLAB在图形显示、符号计算、数值计算方面的功能,定性地分析了微分方程解的性质,700余幅图将方向场、解曲线、相平面等概念形象直观地表示出来。另外,书中选配了1900余道习题供读者使用。本书可供学习数学建模或微分方程的学生作为参考书,对于从事计算与建模的科技人员,本书也具有很高的价值。
本书第四版对2004年第三版的内容作了全面细致的修订,并补充了第三版出版以来不等式研究的新的重要成果,充分反映了20世纪以来,特别是20世纪90年代以来不等式理论和方法的进展。全书共分17章,包含了美国数学评论(MR)2000主题分类中所有关于不等式论题的40个三级分类项目,还包括了外历年来大、中学生各类数学竞赛和研究生入学考试中所出现的新的不等式,以及工程技术问题中常用的不等式,所收录的不等式增加到6千多个,第四版还总结了不等式的常用证法55种,提出了212个未解决或值得进一步研究的问题。由于不等式在数学各个领域和科学技术中都是不可缺少的基本工具,加上本书起点低,因而本书的读者面是非常广泛的,各种不同专业水平的读者,不论是大中学师生,数学研究者,还是工程技术人员,都可以从中找到各自感兴趣的有用材料和研究课题。
本书系统介绍偏微分方向的基本概念及其应用,主要内容包括热传导方程、分离变量法、傅里叶级数、施图姆一刘维尔特征值问题、偏微分方程的有限差分数值法、非齐次问题、定常问题的格式函数、无穷域问题、波动方程和热传导方程的格林函数、线性和拟线性波动方程的特征线法以及偏微分方程的拉普拉斯变换解法等。本书注重应用、内容广泛、层次清晰,适合作为高等院校理工科非数字专业高年级本科生或研究生数学物理方程课程的教材或教学参考书,还可以作为数学专业同类课程的参考书。
《国外数学名著系列(20)椭圆型微分方程:理论与数值处理》论述了椭圆型微分方程的理论与数值处理。主要内容包括古典理论(格林函数、极大值原理等)和变分公式化。《国外数学名著系列(20)椭圆型微分方程:理论与数值处理》作者阐述并分析了有限差分方法和有限元方法。某些章节特别讨论了特征值问题和斯托克斯问题。
自从有了微积分,就有了微分表与积分表。有了具体的函数来求出其导数往往不是很困难,以致微分表常常不为人们所重视;而有了具体的函数来求其积分就不是这样了,有的也许可以容易地求出来,但大量的积分不是轻易求得出来的,于是积分表就一本一本不断地出版,从简单的到复杂的,在国外尤其是这样。由于自然科学和工程技术的不断发展,新的问题层出不穷,不断地提出各式各样的求积分的问题,于是过几年就会有新版的积分表出现,以供自然科学、工程技术和社会科学工作者使用。我们参考了国内外尤其是国外一些新版的积分表和数学手册,如D.Zwillinger主编的《StandardMathematicalTablelandFormulae》,J?J?图马和R.A?沃尔什主编的《工程数学手册》,I.S.Gradshteyn和I.M.Ryzhik主编的《TableofIntegrals,Series,andProducts》等,并广泛地征求了国内自然科学和工程技