全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课程教材及。省级骨干教师培训班参考用书。
《概率论与数理统计教程(第6版)/“十二五”普通高等教育本科国家级规划教材》参照2014年版“工科类本科数学基础课程教学基本要求”进行修订,删除了“自学例题分析与详解”,改写了部分内容,更换了部分习题,增加了附录一(R语言统计分析入门)。本次修订仍保留了第五版“概率少,统计多”的特色。 《概率论与数理统计教程(第6版)/“十二五”普通高等教育本科国家级规划教材》前四章是概率论的基本内容,为数理统计准备必要的理论基础;后五章在概率论的基础上侧重介绍如何用统计方法分析、解决带有性的实际问题。两部分内容紧密配合。全书讲解透彻,文字流畅;内容安排重点突出,难点分散,由浅入深,便于理解。 《概率论与数理统计教程(第6版)/“十二五”普通高等教育本科国家级规划教材》可作为工科院校本科非数学类各专
本套《工程数学》是为高等学校计算机、电子、通信类专业编写的数学教材,共分3册。第2册内容包括复变函数、积分变换(傅里叶积分变换和拉普拉斯积分变换)、线性代数以及数值方法。本书在编写过程中力求做到以应用为目的,以“必须、够用”为原则,以讲清概念和方法为前提,强调应用为重点,在保留传统体系的基础上力求创新,特别注重应用。另外,配有教学参考书《工程数学习题与解答》供教师、学生参考使用。 本书可供高等学校工科和其他非数学类专业学生使用,也可作为其他层次院校的工程数学课程的教材或参考书。
本教材在调研高职高专教育现状及发展趋势的基础上,认真吸取高职高专院校高等数学教学的改进意见,针对高职高专计算机类、工科类专业的特点,在内容结构、适应程度、体系顺序等方面做了相应的调整和安排,并力求突出如下特点: 1.从高职高专课程教育专业人才培养的目标出发,本着以“掌握概念,强化应用,培养技能”为重点,遵循“以应用为目的,理论够用为度”的原则,适度淡化理论体系及逻辑证明: 2.强化几何说明,重视直观、形象的解释,有利于学生直观地理解抽象的概念和理论; 3.注重深入浅出,突出实用性和应用性。 本教材共10章,主要内容有:函数、极限与连续,导数与微分,导数的应用,不定积分与定积分,多元函数微积分简介,常微分方程,无穷级数,线性代数,概率论初步等。
本书系统地介绍了抽象代数这一重要数学分支的最基本的内容,其中包括群论、环论与域论。在域论这一章中还比较全面地介绍了有限Galois理论,书中还配备了数量、难易程度不一的习题,习题均有解答或提示,书后有附录。 本书可供综合性大学、师范大学数学系学生阅读,可作为教材,亦可供理科各系以及信息、通讯工程专业的大学生、研究生及老师参考。
《过程习题解析(第2版)》集编著者在过程学科对本科生与研究生30余年之教学实践,将丁科、理科及经济或管理学科中常见的马尔叫火链、泊松过程与更新过程、二阶矩过程、平稳过程、高斯过程与布朗运动、窄带过程、马尔叮火过程,以及过程通过线性或非线性系统等内容中的典型例题加以解析论证或计算演释,通过读者学习理解,提高解题的论证思路和计算能力,《过程习题解析(第2版)》可作为高等学校本科生、研究生的教学辅导或参考书,也可作为相关工程技术人员的参考资料,同时对某些专业的考博学子《过程习题解析(第2版)》也有的辅助作用。
《偏微分方程简明教程(iCourse教材)》是国家精品资源共享课“偏微分方程”的配套教材,是作者基于多年讲授数学类专业“偏微分方程”课程讲义的基础上修改编写而成的。全书重点介绍了偏微分方程的基本理论和方法,共分七章:章介绍偏微分方程的基本概念和几个经典方程及定解问题的物理与力学来源;第二章介绍二阶方程的特征理论及方程的分类;第三章介绍分离变量法;第四、五、六章分别讨论双曲型、抛物型和椭圆型方程定解问题的求解方法、理论分析、适定性等,并利用所获得的解对物理现象及力学规律加以解释;第七章介绍Fouder变换及其应用。各章内容相对独立,自成体系。教学时可根据实际教学时数其中几章独立安排教学。 《偏微分方程简明教程(iCourse教材)》力求做到由浅入深,通俗易懂,便于教师教学和学生学习。可作为高等学校数
《线性代数与解析几何(第2版)》内容共分七章,包括行列式、矩阵、向量代数与几何应用、线性方程组、特征值与特征向量、二次型与二次曲面、线性空间和线性变换。此外,各章精选了大量习题,部分习题给出了参考答案或提示。 《线性代数与解析几何(第2版)》系统介绍了线性代数与解析几何的基本内容,在编写中,力求由浅入深,由易到难,从具体到抽象,注意知识的前后联系,注重线性代数与解析几何的融合,对理论部分的处理力求简明扼要,注重叙述的准确性与严谨性。 《线性代数与解析几何(第2版)》可作为高等院校工科和其他非数学专业本科生的线性代数与解析几何课程教材或教学参考书。
本书是全国石化系统高校数学协作组编写的数学系列教参之一。本书系统地介绍了概率论与数理统计的基本内容。通过对典型例题的分析、解证,阐明了概率论与数理统计课程的解题方法与技巧,提高学习分析问题和解决问题的能力。本书可作为高等工科院校的辅导教材或复习参考书,也可作为准备报考硕士研究生考前强化复习训练的指导书。
众所周知,数是表达各种量的基本数学工具,函数是表述与研究各种数量关系的基本数学工个。简单的量可用一个数表示,要把同一对象有关的多个量同时表示出来要用到多个数,即一组数。这便促使人们开始研究由所有n元数组构成的集合Rn并在其中定义运算、内积、长度等概念,形成了n维欧氏空间理论。为了将同一范围内的多个对象的多个量同时表达出来,就需要用到多个数组。这就产生了矩阵的概念,它是线性代数研究的主要对象。一元函数用来研究简单变量之间的关系,多个变量与一个变量之间的关系要用多元函数来表示,要表述与研究多个变量与多个变量之间的关系就要用映射或算子的概念了。
《采矿概论(第3版)》介绍了采矿、凿岩与爆破的基础知识,地下采矿的开拓工程和生产工艺,常用采矿方法,平巷、硐室、斜井、天井的设计与施工,矿井通风方法,露天开采工艺与生产能力。此外,《采矿概论(第3版)》对矿山可持续发展、采矿技术设备发展、矿山安全与环境保护等内容也有所介绍。 《采矿概论(第3版)》是为非采矿专业编写的教材,适用于选矿技术、矿井通风与环保、矿山机电、冶金技术、材料技术等专业。
《线性代数》在编写过程中注意到了以下几点:在内容安排上以线性方程组为主线,使线性代数的基本概念'理论以及计算方法围绕着解线性方程组而展开,旨在使内容连贯、重点突出,和使较抽象的向量空间内容安排较后,有利于读者循序渐进;同时使读者感受到研讨所论问题的需要。 在内容深度上考虑到专科层次的特点和要求,突出计算能力的培养,同时又适时提出一些问题,引导归纳、比较和思考,在习题的配备中亦注意配置了一些训练逻辑思维和推理能力的题以供选用,旨在重视和强调实用性,同时又适当注意数学思维能力的训练。
本书系统地介绍了运筹学中的主要内容,重点讲解了应用广泛的线性规划运输问题整数规划网络规划与网络计划存储论决策论等定量分析和优化的理论与方法本书强调学以致用,以大量实际问题为背景引出运筹学各分支的基本概念模型和方法,具有很强的实用性;在基本原理和方法的介绍方面,本书尽量避免复杂的理论证明,通过大量通俗易懂的例子进行理论方法的讲解,具有较强的趣味性,又不失理论性,理论难度由浅入深,适合不同层次的读者
《概率论与数理统计》是科技部创新方法工作专项项目子题“科学思维、科学方法在概率统计课程中的应用与实践”的研究成果,内容包括事件与概率、变量及其分布、二维变量及其分布数字特征和极限定理、数理统计的基本概念、参数估计、假设检验、线性统计模型。每章后配有习题,附录介绍了SAS软件,并给出部分例题的SAS参考程序和部分习题参考答案。 《概率论与数理统计》可作为高等学校理工类、经济管理类本科生的概率论与数理统计课程教材,也可供工程技术人员参考。
《组合数学》(原书第4版)侧重于组合数学的概念和思想,包括鸽巢原理、计数技术、排列组合、Polya计数法、二项式系数、容斥原理、生成函数和递推关系以及组合结构(匹配、实验设计、图)等,深入浅出地表达了作者对该领域全面和深刻的理解,介绍了历史上源于数学游戏和娱乐的大量实例,其中对Polya计数、Burnside定理等的处理使得不熟悉群论的学生也能够读懂。除包含第3版中的内容外,本版又进行了更新,增加了莫比乌斯反演(作为容斥原理的推广)、格路径、Schroder数等内容。此外,各章均包含大量练习题,并在书末给出了参考答案与提示。
大数据时代,每个人都要懂一点统计学,我们缺的不是数据,而是正确分析数据的路径,从海量数据中撷取有用信息、产生新价值,甚至用以推估未知的事物,并且已经成为个人和企业的关键竞争力。这是一本关于统计轻知识的书,作者希望借助轻松幽默的语言来激发读者对统计学的学习热情。内容从描述性统计到推断性统计,通过将生活中有趣的事件一一展开,了解统计雪学中的核心知识点,最后是常见疑问的答疑汇编。本书偏重于对案例和图表的引用,不会过多关注于数学推导。
《概率论与数理统计/应用型本科院校“十三五”规划教材(数学)》书共分12章,其中1~8章为概率论部分,内容包括样本空间和事件、事件的概率、条件概率与事件的独立性、变量及其分布、二维变量及其分布、变量函数的分布、变量的数字特征、大数定律及中心限定理;第9~12章为数理统计部分,内容包括数理统计的基本概念、参数估计、区间估计及假设检验。 《概率论与数理统计/应用型本科院校“十三五”规划教材(数学)》每节、每章后面配有适量的同步练习题,习题难易程度有所不同,以满足各类专业学生学习需要。《概率论与数理统计/应用型本科院校“十三五”规划教材(数学)》在附表中给出了5个常用数表。 《概率论与数理统计/应用型本科院校“十三五”规划教材(数学)》可作为工科院校本、专科“概率论与数理统计”课程的教材,
《矩阵论引论》为工科院校硕士研究生矩阵理论教材,内容包括:矩阵的初等性质;线性代数;矩阵分解;矩阵广义逆;矩阵分析以及矩阵的直积和拉直运算。 《矩阵论引论》叙述深入浅出,思路清晰,并配有大量习题,故既可作为硕士研究生的教材,又可作为自学读物,也可作为工科院校有关专业教师的参考资料。
本书主要介绍工程技术中常用的试验设计与分析方法。内容包括方差分析、因子设计、正交试验设计、稳健设计和可靠性设计,其中稳健设计是较新的试验设计方法。本书内容丰富,例题多样,紧密联系实际。书中配有数量的习题,书后附有习题答案。概率统计的基础知识作为附录A列于书后,附录B是常用的分布表和正交表。本书可作为理工科各专业及管理专业的大学生、研究生的教材,也可供工程技术人员、科研人员和教师参考。