本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
今天,一方面,人类的资源越来越紧张,另外一方面,人类生存权利平等、生命价值高于一切等等,渐渐成为普遍价值。这样,如何在竞争的世界中合作共赢越来越被人们所重视。 然而,合作不仅仅是一个态度问题,更重要是方法问题。博弈论是关于理性人竞争与合作的理论,然而博弈论没有给出解决博弈困境以及如何合作的方法。本书利用博弈理论,分析如何在竞争性博弈中做到合作,以及在非竞争性的博弈即联盟博弈中,如何实现合作。本书利用大量具体案例深入浅出地阐述博弈中参与人“如何避免更糟”、“如何寻求更好”、“如何走出必然的困境”、“如何共存”等等合作的具体方略。 本书可看做是共赢的行动指南或行动方法论。
由*高教司和中国工业与应用数学学会主办的全国大学生数学建模竞赛一直受到广大同学的热烈欢迎,不断健康地向前发展,有利于培养学生解决实际问题的能力、创新意识及合作精神,有力地促进了高等院校的教学改革,已经发展成为国内规模*的大学生学科性竞赛活动。本书第四版在2008年第三版的基础上进行了补充与修订,收集了1992年以来有关竞赛的文件、赛题、参赛及获奖情况、组织工作经验及学生收获等,是对我国大学生数学建模竞赛20年来发展历程的初步总结。 本书可供组织和参加数学建模竞赛的师生参考,也可供有关教育行政人员等查阅。
《运筹学导论(0版)》作为运筹学领域的佳作,是美国多所高校的运筹学教材用书,销售量一直名列前茅。原著作者长期从事运筹学的教学和科研工作,是业界的佼佼者。原著具有内容翔实、专业性强、应用价值高等特点,对靠前同类著作产生了重大影响。翻译出版该著作,对于丰富和发展我国军事管理学和运筹学理论和方法体系,完善军事管理学的定量研究手段,具有较大的理论价值和实践意义。译著可作为运筹学、管理学、系统工程等专业的教材,也可作为从事军事管理、经济管理等领域的研究人员的参考用书。
本书精选反映当代科技进步和社会发展的21个问题作为案例,以“问题驱动”的形式详细讲解建立数学模型的思路、方法和步骤,并给出问题的解决方案。在所选的案例中,有的是“中国大学生数学建模竞赛”、“美国大学生数学建模竞赛”的赛题,也有的是根据赛题改编的,还有一些其他问题,涉及的数学方法主要有微分、积分、代数、统计、概率、*化、微分方程、分形几何、拟合、插值、灰色理论、图论及现代优化算法等。另外,还有一些物理方法。为便于读者学习和训练,本书针对不同案例数学建模所需的数学理论和方法,有侧重地分别介绍相关的数学知识。除个别计算比较简单的案例外,都在案例解答中给出了计算程序。《数学建模案例》案例特色鲜明、涉及范围广阔,内容讲解紧凑、明了,对读者掌握分析实际问题建立数学模型大有帮助,可作为