刘培杰数学工作室编的《柯西函数方程--从一道上海交大自主招生的试题谈起/数学中的小问题大定理丛书》从一道上海交大自主招生试题谈起,讲授了柯西函数方程,及由此衍生的诸多问题。本书透过柯西函数方程,向读者勾勒了这道自主招生试题的全貌,指出了大学自主招生选取题目的背景及深厚内涵,考察学生的数学思维方向等,展示了函数方程在中学数学思想中的重要性。本书适合于高中生、大学生以及数学爱好者参考阅读。
《复变函数专题选讲》是复变函数专业基础内容的进一步发展,共分为9章,包含cauchy定理的推广、模原理、整函数与亚纯函数、共形映射、解析开拓及riemann曲面初步、调和函数与dirichlet问题、γ函数和b函数、椭圆函数、cauchy型积分。上列最后三项与复变函数的应用有密切联系,其他各项都是专业基础内容的进一步发展。它们在复变函数论的理论研究和应用中都有重要意义。《复变函数专题选讲》可作为数学类高年级大学选修课及研究生必修课的参考书,也可供广大数学工作者和有关科研人员参考。
本书主要介绍著者在不定方程、代数数论、组合设计、整图和有限单群的精细刻画方面的应用的研究成果。全书共分8章佩尔方程与F义佩尔方程,一些三次与四次不定方程,二次域与不定方程,一些高次不定方程,一些指数不定方程,不定方程对组合设计的应用,用佩尔方程的解构造整图,用不定方程的方法确定单Kn群。
函数的凸性和广义凸性是运筹学和经济学研究中的重要基础理论.本书版系统地介绍数值函数的各种类型的广义凸性以及它们在运筹学和经济学中的一些应用.主要内容包括:凸集与凸函数、拟凸函数、可微函数的广义凸性、广义凸性与性条件、不变凸性及其推广、广义单调性与广义凸性、二次函数的广义凸性和几类分式函数的广义凸性.在此基础上,第二版增加了若干新的成果和使用较多的基本结果,调整了一些内容顺序,某些定理进行了简化证明等.
本书主要介绍著者在不定方程、代数数论、组合设计、整图和有限单群的精细刻画方面的应用的研究成果。全书共分8章佩尔方程与F义佩尔方程,一些三次与四次不定方程,二次域与不定方程,一些高次不定方程,一些指数不定方程,不定方程对组合设计的应用,用佩尔方程的解构造整图,用不定方程的方法确定单Kn群。
本书是一部备受专家好评的教科书,书中用现代的方式清晰论述了实分析的概念与理论,定理证明简明易懂,可读性强,全书共有200道例题和1200例习题。本书的写法像一部文学读物,这在数学教科书很少见,因此阅读本书会是一种享受。
首先从最简单的园和三角函数说起,逐步过渡到椭圆积分,进而带领读者初识椭球积分。在完成了这步的过渡后,数学上的深入稍稍放缓,话锋转向讨论椭圆和椭球形体里的几个具体的电磁学实例,并以矩量法的计算与之对比、相互印证,使读者始终是"接地气"的、始终站在自己的专业里学数学。在读者舒过一口气之后,作者又带领他们掀起了学习数学的第二个高潮,详细论述了椭球函数理论及其保角映射,又落实到椭球函数网络和滤波器等具体的电磁场问题上来。这样的安排,完全符合有关专业领域内高年级大学生和低年级研究生的思维方式和已有的知识结构。全书文字精炼、叙述清楚,是一本理想的工程数学读物。
《多项式和多项式不等式(英文版)》是springer数学研究生(gtm)61卷,主要介绍多项式和有理函数,重点论述代数多项式和三角多项式的特性,同时也介绍了多项式几何、正交多项式、切比雪夫和马可夫系、müntz系和müntz-type型稠密性定理,以及不等式用于多项式和有理函数等理论。其中有些内容较同类图书更加全面。目次:导论和基本特性;特殊多项式;切比雪夫和笛卡儿系;稠密性问题;基本不等式;müntz空间中的不等式;有理函数空间中的不等式。读者对象:数学及相关专业研究生和科研人员。
多项式,指数函数,三角函数(正弦函数和余弦函数)以及许多其他函数都与整函数相联系,整函数在数学和它的应用中起着重要的作用,那些不是多项式的整函数(称为整函数)在许多方面都奇妙地将它们归入“无穷高次多项式”一类,书中讲授整函数的基本性质,它们的零点,增长速度,值之间的代数关系以及其他性质,本书基于作者的两个讲义,那两个讲义作者在莫斯科为教师进修班讲授过。只要读者具有复数和数学分析的基础知识(微分法,积分法和级数概念)就能读懂全书,本书适合师生及数学爱好者使用。
本书系统讨论了不确定度的基础和原理,详细研究了不确定度的各种方法,分析了不确定度的多方面应用。本书可供计量测试、质量监督、认可认证、标准、科研、生产人员以及大专院校师生使用。
Thecorechaptersofthisvolumeprovideacompletecourseonmetric,normed,andHilbertspaces,andincludemanyresultsandexercisesseldomfoundintextsonanalysisatthislevel.Theauthorcoversanunusuallywiderangeofmaterialinaclearandconciseformatincludingelementaryrealanalysis,LebesgueintegrationonR,andanintroductiontofunctionalanalysis.Thismakesaversatiletextalsosuitedforcoursesonrealanalysis,metricspaces,abstractanalysis,andmodernanalysis.Thebookbeginswithacomprehensivechapterprovidingafast-pacedcourseonrealanalysis,andisfollowedbyanintroductiontotheLebesgueintegral.Thisprovidesareferenceforlaterchaptersaswellasanintroductionforstudentswithonlythetypicalsequenceofundergraduatecalculuscoursesasprerequisites.Otherfeaturesincludeachapterintroducingfunctionalanalysis,theHahn-Banachtheoremandduality,separationtheorems,theBaireCategoryTheorem,theOpenMappingTheoremandtheirconsequences,andunusualapplicationssuchasweaksolutionsoftheDirichletProblemandParetooptimalityinMathematicalEconomics.Ofspecialinterestistheuniquecollectionofnearly75
《非局部反应扩散方程》以反应扩散方程的基本理论为基础,以生物、物理和化学等自然学科为背景,将几类主要的微分方程、积分方程作为研究对象,介绍非局部反应扩散方程的基本理论、基本方法以及一些常见的应用。内容包括非局部反应扩散方程的行波解、对应柯西问题解的适定性以及斑图动力学理论;主要用到的方法有Leray-Schauder度理论、稳定性分析、单调迭代方法、常数变易法、上下解方法、多尺度分析、Turing分支理论、数值模拟等。《非局部反应扩散方程》所介绍的内容简明扼要,深入浅出,并尽量反映该内容的思想本质,从多个角度阐述了非局部反应扩散方程的核心内容。《非局部反应扩散方程》彩图可扫封底查看。
《偏微分方程》共分八章:章为绪论;第二、三章分别介绍了一阶方程、具有两个自变量的二阶方程的基本知识;第四、五、六章分别介绍了三类基本方程:波动方程、热传导方程和Laplace方程的定解问题的适定性、求解方法及解的性质;第七章主要介绍了一阶拟线性双曲守恒律方程组的一些基本知识;第八章介绍了Cauehy-Kovalevskaya定理。另有两个附录:Fourier反演公式;Li-Yau估计。《偏微分方程》不仅把注意力集中在传统的偏微分方程基础知识上,而且还有目的地介绍一些当代数学知识,譬如在几何分析中具有重要作用的Li-Yau估计和Hamack不等式等。《偏微分方程》的另一特点是,除在每节后面为读者准备了一些习题之外,还在一些章节后面为读者准备了一些思考题和“开放问题(openproblem)”。这些问题具有的启发性,对提高学生对本门课程的学习兴趣有很大帮助。
本书是关于函数方程的解法、应用以及一些理论问题的专门著作。全书共6章,章介绍函数方程的有关概念和分类;第二章较为系统地介绍了函数方程的一些常见的求解方法;第三章给出三类具有特殊结构的函数方程的处理技巧;第四章主要讨论几类函数方程解的性质,包括解的存在性、稳定性等,并且介绍了巴拿赫空间中的函数方程;第五章、第六章是函数方程的各种应用,内容涉及许多领域。本书内容丰富翔实、说明深入浅出,并收集了大量历届、国际数学奥林匹克试题。本书可供高等院校数学教师、数学工作者和科技人员参考,对广大中学数学教师和参加数学竞赛的中学生也有的参考价值。
《新世纪高等学校教材·数学与应用数学系列教材:复变函数论》共分为六章,介绍了复数列、级数和辅角,用级数定义了指数函数等初等函数,证明了Euler公式,并利用它把复数的三角表示转化成书写简单的指数形式.包括:复变函数、复变函数的微分和积分、解析函数的级数理论等.