有限群理论是研究对称性的重要数学基础,在理论物理、量子化学、晶体学、计算机编码、量子通信、信息加密等领域有重要应用。本书介绍了作者在有限群构造领域的主要研究成果。为了便于读者阅读,本书详细介绍了有限群论的基本概念、基本定理及其证明,内容是自封的。主要内容为:群的基本知识,群的作用,有限幂零群与超可解群,阶为p2q2,pq3,p2q3,p3q3 的有限群的完全分类(这里p,q 是不同的素数)。本书可以作为理工科专业高年级本科生、研究生参考用书,也可以作为自然科学工作者的参考读物。
本书是解读望月新一“跨视宇Teichmüller理论(IUT理论)”的通俗读本。作者将望月的论文及构想,转化为一般读者也能读懂的语言,创作了这本“IUT理论”的解读手册。书中侧重解读“IUT理论”的思考脉络及其对现代数学体系的重大意义,同时也展示了数学家的思考方法,是一本兼具前沿数学理论知识与*数学思维方法的科普佳作。本书适合作为数学研究人员、数学爱好者了解“IUT理论”的入门读本,也适合作为学生了解数学思考方法的参考读物。
《人文社科·十万个为什么》丛书旨在对青少年读者普及人文社科的知识。含10分卷,分别为:中国文学、世界文学、中国历史、世界历史、哲学、法律、经济、美术、音乐、心理。各卷根据相关学科的知识体系谋篇布局,以设问立题、知识小品文作答的形式,介绍本学科的基本内容,解析其主要的知识点,力达知识性、科学性、趣味性的统一。
本书主要针对数学二,本书汇集了1999年至2016年全国硕士研究生入学统一考试数学二试题,按《全国硕士研究生入学统一考试数学考试大纲》所规定的考试内容及其顺序,将历年同一内容的试题归纳在一起,并进行详细解答。这样便于考生复习该部分内容时了解到题目怎么考,命题如何命制,使考生掌握考研数学试题的广度和深度。
《北大燕园·2015年李正元·李永乐考研数学(1):数学复习全书(数学一)》每章均由以下五个部分构成: 一、知识结构网络图——编写该部分的目的主要让考生弄清各知识点之间的相互联系,以便对各章内容有一个全局性的认识和把握。 二、内容概要与重难点提示——编写该部分的目的主要使考生能明确本章的重点、难点及常考点,以便在复习中有的放矢,提高效率。 三、考核知识要点讲解——本部分对大纲所要求的知识点进行了全面地阐述,并对考试重点、难点以及常考点进行了剖析,指出了历届考生在运用基本概念、公式、定理等知识解题时普遍存在的问题及常犯的错误,同时给出了相应的注意事项,以加深考生对基本概念、公式、定理等重点内容的理解和正确应用。 四、常考题型及其解题方法与技巧——本部分对历年统考中常见题型进
前言 高等数学(即微积分)是高校理工科最主要的基础课之一.学生对它掌握得如何,不仅直接关系到后续课程的学习,而且对今后的提高与发展,以及工作中的贡献,都有着深远的影响.为帮助广大学生和自学者学好高等数学,为给他们备考研究生入学考试提供一份复习资料,编写了这套《高等数学解题方法技巧归纳》(上、下册). 本书自出版以来,深受读者欢迎,多次重印,全国.本书的修订广泛听取了读者的意见,对前一版本的内容作了适当的调整、充实和删改. 本书将高等数学的主要内容按问题分类,通过引例归纳总结各类问题的解题规律、方法和技巧.它不同于一般的教科书和习题解答,自具特色. 本书注重一题多解,注意分析各种解题方法的特点与联系,分析题中条件与所得结果之间的联系,灵活地将解题方法和技巧与所学基本理论联系起来.这样不仅
内容简介: MBA联考综合试卷数学部分历年真题解析。主要内容是将所属于同一考点之下的真题进行归类编排,并进行详细解析,总结考点情况,阐述命题规律,然后举一反三,编写适量模拟试题,对试题进行解析,以达到掌握考点的效果。
本书分试题册和解析册两册,由微积分、概率论、线性代数三部分组成,严格按照新公布的经济类联考数学考试大纲编写,内容分为九章。1000题选题的题型、格式和难易程度与真题保持高度一致。本书题量丰富,题目精心选编,更好更全面的诠释经济类联考数学考试的内容、基本题型、重要知识点的内涵和延伸,为考生备考助力。
本书是针对考研数学复习的强化阶段和冲刺阶段所编写的八套模拟题,编者严格依据《2019年全国硕士研究生入学统一考试数学考试大纲》、认真分析和研究今年考研命题方向精心选题编撰。本书题目覆盖考研数学的重要知识点和常考题型,为广大考生提供全方位、系统化的考前训练,帮助考生对复习效果进行有效自我检测,强化对重要原理的理解和方法的灵活运用。
《考研数学基础解析120讲》是作者在多年辅导教学的讲义基础上,为帮助大学非数学专业本科生复习公共数学基础课程和准备参加全国硕士研究生招生考试而编写的辅导教材.本书将“高等数学”分为60讲,“线性代数”分为30讲,“概率论与数理统计”分为30讲,共计120讲.各讲内容配备的典型例题经过作者仔细斟酌挑选,具有针对性,尽量做到例题的命题角度巧,角度比较新,难度把握准.各讲后面均配有能力训练题,题的设计严谨、独特,与典型例题一脉相承,有些题是作者多年的积累和根据考试的命题特点自己进行命制的,题量不大,基本是十道题以内.对于有一些难度的习题,给出了比较详细的解答过程,但希望考生在自己练习时要勤思、多思、总结,要努力提升自身的能力。
《考研数学三部曲之大话线性代数》是一本独特的线性代数参考书,以“盖楼”为目标轻松构筑整个线性代数体系。读者每阅读完一章,就是盖完了大楼的一层,而每层中又分为“砖”和“房间”两部分,先运来“砖”再搭建“房间”,这种安排内容的方式使得全书充满了趣味性。 《考研数学三部曲之大话线性代数》的特色除了趣味性之外,还有三个“非常”:语言非常通俗易懂,逻辑非常清晰,例题非常丰富。 本书的主要内容包括高等院校线性代数课程的所有内容,针对考研数学的特殊性进行了强化,同时对于一些传统课本中的重点、难点、疑点以及被忽视的一些潜在要点做出了全新诠释,另外,由于作者常年从事考研培训,本书还包括相当多的不传之秘——考研数学的套路。 本书作者就职于著名培训机构,本书正是多年培训生涯的总结,毫无保
《考研数学三部曲之大话概率论与数理统计》是一本独特的概率论与数理统计参考书,以“盖楼”为目标轻松构筑整个体系。读者每阅读完一章,即盖完了大楼的一层,而每层中又分为“砖”和“房间”两部分,先运来“砖”再搭建“房间”,这种安排内容的方式使得全书充满了趣味性。 《考研数学三部曲之大话概率论与数理统计》的特色除了趣味性之外,还有三个“非常”:语言非常通俗易懂,逻辑非常清晰,例题非常丰富。 《考研数学三部曲之大话概率论与数理统计》的主要内容包括高等院校概率论与数理统计课程的所有内容,针对考研数学的特殊性进行了强化,同时对于一些传统课本中的重点、难点、疑点,以及被忽视的一些潜在要点做出了全新诠释,另外,由于作者常年从事考研培训,本书还包括相当多的不传之秘——考研数学的套路。 《
本书主要针对数学二,本书汇集了1999年至2016年全国硕士研究生入学统一考试数学二试题,按《全国硕士研究生入学统一考试数学考试大纲》所规定的考试内容及其顺序,将历年同一内容的试题归纳在一起,并进行详细解答。这样便于考生复习该部分内容时了解到题目怎么考,命题如何命制,使考生掌握考研数学试题的广度和深度。
本书根据管理类联考综合能力全新考试大纲、历年真题及其命题思路编写而成,涵盖了管理类联考数学考试大纲所有的内容和题型.全书共分为三篇,即专项强化篇、系统强化篇和模拟冲刺篇,共32套试卷,800道习题.专项强化篇的内容可使考生通过专项练习巩固之前的学习内容,查漏补缺,消除盲点,对之前所学知识进行灵活运用.系统强化篇的内容严格按照真题的题型比例和难度编写,目的在于提高考生的解题速度和解题准确率.模拟冲刺篇的内容是笔者在教学答疑过程中,针对学生反馈的经典题、易错题、难题进行综合整理改编,针对真题命题趋势进行预测并结合考试大纲的新编题目综合而成的模拟试卷,其难度略高于真题,以防真题难度陡增. 本书适合所有备考管理类联考的读者使用.希望本书能够帮助考生金榜题名、实现梦想!
内容提要《考研数学复习教程(数学一和数学二适用)》包括以下部分:一、考核内容要点———本部分对《数学考试大纲》所要求的内容进行了全面、透彻的讲解,注重对基本概念、基本理论和基本方法的解读。二、补充公式与结论———本部分对一般教材中没有的、但对知识理解和解题有益的公式和结论进行了较为全面的补充,并对难于理解的公式和结论给出了证明或举例说明。三、典型问题与方法技巧———本部分是本书的精华也是本书的特色:在对历年试题研读的基础上,详细归纳总结了每部分考过的以及可能考到的各类问题,抛开其表面形式,剖析出其本质特征,给出了每类问题的快捷有效的处理方法,并注重每类问题的各种变式,使读者能够见到题目就知从哪入手,并快速准确求解。四、强化训练———本部分试题的难易程度十分贴近考研真题,有的
《北大燕园·2014年李正元、李永乐考研数学(7):数学全真模拟经典400题(数学1)》是依据考研数学大纲为2014年考研读者全新优化设计的一本全真模拟训练套题,本书中的试题难度略高于2013年考研试题,解答题(包括证明题)体现了考试重点、难点内容,综合性比较强;选择题与填空题着重考查考生对基本概念、基本公式、基本定理的理解和运用,适用于第三阶段复习训练之用。 《北大燕园·2014年李正元、李永乐考研数学(7):数学全真模拟经典400题(数学1)》中的每道题均有较透彻的分析、详细解答、归纳总结的评注,因此希望考生在做题时,如果遇到了困难,不要急于看分析与解答,要多思考,只有这样才能达到本书编写的目的,才能提高应试水平,才能取得好成绩。
本书通过一系列重要的数学地标,系统地梳理了微积分理论,既包含课堂上没讲授的数学通识内容,又包含对一些复杂知识点的细致拆解,还包含微积分在现实生活中的应用,帮助读者开阔数学视野、提高数学思维、加深对数学的理解。 全书共分为四篇:第一篇“数学通识,一些你应该了解的观点和事实”为读者构建数学学习的理念和方法;第二篇“从有限到无穷,初等数学与高等数学的分水岭”解释高等数学何以称为高等?大学数学内容与中学数学内容相比是否存在一个明确的分水岭?为微积分的引入做好铺垫;第三篇“从局部到整体,微积分的华彩乐章”是全书核心,借助“局部—整体原则”讨论函数极限、连续性、无穷小及其比较、导数与微分、微积分基本定理、多元函数微积分等;第四篇“以简单代复杂,微积分的实践之路”包括泰勒展开、傅里