证明是数学思想中*重要,也是*开拓性的特征之一。没有证明,*无法谈论真正的数学。本书讲述了证明的演变及其在数学中的重要作用和启发意义。从古希腊几何学时代开始,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事。我们将看到欧几里德、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。这本书不是教材,它是在讲数学的历史,更是在讲数学思想的演变。作者揭示了数学学习和研究的底层方法和逻辑,让读者看到在数学中什么定理可以被证明,如何证明?什么问题可以(或无法)被解决?为数学研究和发展打开全新的视角。
本书是*数学家保罗·哈尔莫斯的自传,也是他为自己所处的“数学时代”写下的历史掠影。哈尔莫斯因在泛函分析、遍历理论、测度论、布尔代数理论等领域的贡献著称于世。他不仅对整个数学领域的研究保持着浓厚兴趣,而且始终关注着数学世界的人与事。读者可在本书中看到上百位数学家的身影。哈尔莫斯讲述了他们的趣闻轶事,为他们拍照留念,让读者对这群数学家产生*而感性的认识。这本书堪称20世纪的数学“社会史”。同时,作者谈到如何学习、如何做研究、如何营造良好的学习和学术环境,讲述了自己对数学的理解,以*身经历告诉读者,什么是真正的数学家和数学研究,以及怎样才能成为一名数学家。 本书适合数学爱好者、数学研究人员,以及对数学史和科学史感兴趣的大众读者阅读。
本书以通俗易懂的语言和鲜活的案例,阐述博弈论的基本理论框架和主要知识点。全书分成四大部分:第一部分主要论述在同步一次囚徒困境博弈中,尽管合作对整体而言是最优的,但不合作却是个体的最优策略。书中对困境的机理及其在现实社会生活中的具体表现做了分析,还介绍了同步一次博弈的其他一些有趣场景和案例。第二部分讨论重复博弈,围绕如何从困境走向合作展开,重点介绍在重复博弈中,自利行为和长期主义可以催生合作这一重要原理及其具体应用。同时还介绍了混合策略的基本思想。第三部分讨论序贯博弈。参与者行动有先后顺序,那些与自身利益相冲突的决策,会在其他参与者行动之后发生变化。参与者可以通过承诺行动改变竞争对手的预期,以促使其选择对自己有利的行动。第四部分是不完全、不对称信息下的博弈,主要阐
数学是理解和探索世界的工具,无论是学生、工程师还是科学家,*有能力也应该学会数学建模的方法和思想,学会如何用正确的思维方式搭建解答问题的阶梯。这本书旨在将数学作为一门语言、一种方法来*读者学习数学。读者也将看到如何理解、传承并调用现代科学的知识、传统和范式。数学建模不仅是数学学习和研究的过程,更是我们认识世界、理解生活的方法之一,而在实践数学建模的过程中,我们将深刻感受到数学的趣味性、严谨性和解决问题的无穷威力,正如亨利?庞加莱的名言所讲,这将是一次面向心智的雅致统一的追求。
本书以独特的视角呈现线性代数的全貌,*覆盖了线性空间与线性映射、矩阵与行列式、谱理论、欧几里得结构等核心理论,还单独讨论了向量值与矩阵值函数的微积分、动力学、凸集、赋范线性空间、自伴随矩阵的本征值计算等特色专题,理论和应用相结合。每章*有练习,并为部分练习提供解答。书后还有辛矩阵、快速傅里叶变换、洛伦兹群、若尔当标准形等16个附录。
本书着眼于模形式的经典理论,详细解说基本定义与性质、以及著名的猜想和结果等。书中还间杂数论、几何及等方面的相关技术与应用,视角力求多元,以期读者对这一领域的面貌能有宏观的掌握,为进一步涉足算术几何、代数数论、自守表示理论等学科奠定基础。
教学设计是指教师在教学过程中,依据教学的一般原理和教学内容、目标、要求,结合自身的经验和特点,从学生知识、能力状况的实际出发,对各种教学要素进行统筹整合,制订教学方案的技术性活动,它是根据教学对象和教学目标,确定适当的教学起点与终点,将教学诸要素有序地安排并优化,形成教学方案的过程. 本书共 7章,内容包括总论、随机事件与概率、一维随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、极限定理、数理统计.涉及教学设计总论和 24节课程教学设计,每节课程教学设计包括:教学目的、教学思想、教学分析(教学内容、教学重点、教学难点、对重点、难点的处理)、教学方法与策略(课堂教学设计思路、板书设计)、教学安排(教学进程框架、教学进程详细内容)和教学评价 6个部分.c
暂无内容简介。。。。。。
以上ISBN信息均为平台自动生成,部分商品参数可能存在些许误差,商品准确参数详情可咨询客服。本店为新华书店总部直营店铺,所售图书均为正版,请放心购买! 基本信息 书 名 烧掉数学书:重新发明数学 出版社 湖南科学技术出版社 作 者 【美】杰森·威尔克斯著 出版时间 20201001 I S B N 9787571004071 定价 98 开 本 16开 185*260 装 帧 平装 版 次 1 字 数 360 (千字) 页 数 404 读者范围
本书不仅详细叙述了拓扑线性空间,包括若干子类局部凸空间、赋范空间、内积空间的公理系统、结构属性及其之上的强弱拓扑、共轭性,还深入论述了该学科离不开的几个专题,即形式上更为一般的三大基本定理与泛函延拓定理, Banach代数特别是Gelfand变换的基本理论,紧算子及其谱理论,自伴算子的谱理论,无界正常算子的谱理论以及Bonsall的闭值域定理,不变子空间的Lomonosov定理等;而且给出了以上基本理论的丰富多彩的应用,包括完整的关于广义函数、Fourier变换及其偏微分方程基本解的论述,对于Tauber型定理的应用,von Neumann的平均遍历定理,算子半群的Hille-Yosida定理并应用于发展方程等。
本书讲述了小学和初中阶段数学学习法、学习习惯和解题思路,针对计算能力提升、知识难点讲解、数学思想应用和培养,为小学和初中阶段家长提升家庭辅助教育水平,以及初中学生实现自学与自练,提供了切实可行、容易上手的方法和思路,解决数学学习和教育中的种种困难,让大家不再盲从和焦虑。本书适合小学和初中阶段的家长和数学教师阅读,亦可作为学生本人提升数学水平的指导。
本书坚持实用性第一的原则,以通俗易懂的生活经验作为切入点,详细、准确、全面地讲解高中数学的基本原理、逻辑思路和分析方法,充分体现“数形结合”的思想,帮助读者建立扎实的数学基础。 本书涵盖对应现行高中数学的所有模块,并以更加连贯的顺序编排。本书详细介绍各数学分支的基本原理、核心概念、逻辑脉络、体系框架、注意要点和应用举例。本书分为20章,主要包括集合与逻辑命题、等式与不等式、函数的概念和性质、对数和指数、三角函数、平面解析几何、立体几何、概率与统计等。 本书内容通俗易懂、原理透彻、逻辑清晰、结构完整,特别适合在读高中生、想要预习高中数学知识的初中生,以及备考公务员考试、GRE考试等涉及初等数学知识考试的考生使用。
本书是威廉·费勒的著作《概率论及其应用(卷1)》的续篇。第1、2、3、6章介绍了各种重要的分布和随机过程;第7、8、16、17章讨论大数定律、中心极限定理和无穷可分分布;第9、10章讨论半群方法与无穷可分分布、马尔可夫过程的关系;第11章为更新理论;第12、18章论述随机游动及傅立叶方法的应用;第13、14章论述拉普拉斯变换及其应用;第19章为调和分析。
本卷收录了吴文俊的《几何定理机器证明的基本原理》一书。书中论述初等几何机器证明的基本原理,证明了奠基于各种公理系统的各种初等几何,只需相当于乘法交换律的某一公理成立,大都可以机械化。因此在理论上,这些几何的定理证明可以借肋于计算机来实施。可以机械化的几何包括了多种有序或无序的常用几何、投影几何、非欧几何与圆几何等。 全书共分六章。前两章是关于几何机械化的预备知识,集中介绍了常用几何;后四章致力于几何的机械化问题。第3章为几何定理证明的机械化与Hilbert机械化定理,第4,5章分别为(常用)无序几何的机械化定理和(常用)有序几何的机械化定理,第6章阐述各种几何的机械化定理。 本书可供数学工作者和计算机科学工作者以及高等院校有关专业的师生参考。
这本苏联/俄罗斯数学家阿诺德所著的常微分方程讲义独具特色。书中强调常微分方程的定性性质和几何性质及其它们的解,全书有272个几何插图,却没有一个复杂的数学公式。全书分为5章36节。本书是阿诺德的名著,他的许多优秀作品都被翻译为英文,本书是其中的一本,其简明的写作风格、严谨的数学基础结合物理直觉,给人一种很轻松漫谈式的教学特点,被誉为很优秀的常微分教材。
本书*新地从时空变化来研究石油(PHC)在胶州湾水域的分布和迁移过程。在空间的尺度上,通过每年石油(PHC)的数据分析,从含量大小、水平分布、垂直分布和季节分布的角度,研究石油(PHC)在胶州湾水域的来源、水质、分布以及迁移状况,揭示了石油(PHC)的迁移规律。在时间的尺度上,通过五年石油(PHC)的数据探讨,研究有机农药石油(PHC)在胶州湾水域的变化过程,展示了石油(PHC)的迁移过程和变化趋势:1.含量的年份变化;2.污染源变化过程;3.陆地迁移过程;4.水域迁移过程;5.沉降过程。这些规律和变化过程为研究石油(PHC)在水体中的迁移提供结实的理论基础。也为其他有机化合物在水体中的迁移研
这是一本与《高等数学(同济七版)为已套的课后习题解析。本书按照《高等数学(同济七版)理论体系编写,每一节分为“划重点”“斩题型”“解习题”模块。其中,“划重点”摸块归纳本节重点:“斩题型”模块总结破题技巧,梳理典型例题与解法,同时,通过(日题引导)让读者及时练习;“解习题”模块给出课后习题的详细解答。