本书教你如何从基于时间的数据(如日志、客户分析和其他事件流)中获得即时、有意义的预测。在这本通俗易懂的书中,作者通过带有注释的Python代码进行全面演示,你将学习用于时间序列预测的统计和深度学习方法。通过跟随书中的实例锻炼你的技能,你很快就会准备好建立自己的准确、有洞察力的预测。
《计算机程序设计艺术》系列被公认为计算机科学领域的杰出之作,深入阐述了程序设计理论,对计算机领域的发展有着极为深远的影响。本卷为系列的第2卷,全面讲解了半数值算法,分“数”和“算术”两章。书中总结了主要算法范例及这些算法的基本理论,广泛剖析了计算机程序设计与数值分析间的相互联系。
《利用Python调试机器学习模型》详细阐述了利用Python调试机器学习模型的基本解决方案,主要包括代码调试、机器学习生命周期、为实现负责任的人工智能而进行调试、检测机器学习模型中的性能和效率问题、提高机器学习模型的性能、机器学习建模中的可解释性和可理解性、减少偏差并实现公平性、使用测试驱动开发以控制风险、生产测试和调试、版本控制和可再现的机器学习建模、避免数据漂移和概念漂移、通过深度学习机器学习调试、高级深度学习技术、机器学习进展简介、相关性与因果关系、机器学习中的安全性和隐私、人机回圈机器学习等内容。此外,本书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。 本书可作为高等院校计算机及相关专业的教材和教学参考用书,也可作为相关开发人员的自学用书和参考手册。
《细说Python编程:从入门到科学计算》以Python 3.x为平台,由两位博士执笔,详尽细致地阐述Python编程的基础知识和高级技巧,并以大量示例代码进行实践,同时还介绍人工智能领域广泛使用的科学计算工具NumPy。《细说Python编程:从入门到科学计算》分为两篇,共19章。篇(~11章)为基础知识,主要讲解Python的编译环境、入门知识、字符串、容器、函数、循环、条件选择、模块、类、类的特殊成员、文件;第2篇(2~19章)为高级应用,包括异常处理、日期和时间、测试代码、程序打包、使用数据库、网络编程、图形用户界面、科学计算等内容。全书知识点丰富,辅之以示例演示,读者可以边学边练,快速掌握。 《细说Python编程:从入门到科学计算》还提供了16小时共151节微课教学视频,读者扫码即可观看学习,免费提供的示例源码文件可直接调用,方便上机操练
本书系统地介绍了数据可视化技术及其在诸多领域的实际应用。首先,阐述了大数据可视化技术的基本概念以及相关的基础知识。然后,采用理论与实践相结合的方式,针对实际应用中的各种不同类型的数据,通过各种图表及实例代码展示了这些数据的可视化方法。,介绍了数据可视化技术在不同领域中的基本应用。 本书可以作为高等院校计算机、数据科学与大数据技术等相关专业的数据可视化教材,也可以供从事数据可视化、数据分析的相关技术人员参考使用。
《Python OpenCV快速入门到精通》是一本基础与实践相结合的图书。本书从学Python OpenCV到用Python OpenCV的角度出发,在帮助读者朋友快速掌握Python OpenCV基础的同时,引导读者朋友如何使用Python OpenCV开发简单的应用程序。全书共28章,主要分为3个篇章(基础篇、实战篇、强化篇),基础篇包括搭建开发环境、图像处理基础、NumPy工具包、绘图及交互、图像的几何变换、图像运算、阈值、形态学操作、滤波器、图形检测、图像轮廓、模板匹配、视频处理和人脸检测与识别;实战篇包括更改卡通人物的衣服颜色,图像操作之均分、截取和透视,计算轮廓的面积、周长和极点,掩模调试器,粘贴带透明区域的图像,鼠标操作之缩放和移动图像,机读答题卡,检测蓝色矩形的交通标志牌,滤镜编辑器,给图像打马赛克,给图像的任意区域打马赛克和手势识别;强化篇包括人工瘦脸
Go语言"入门易,精通难”。想要用Go语言写出优质的软件,不仅要了解Go语言的语法,还需要对Go语言的特性、软件的通用编写方法、软件项目的组织方法、并发程序设计、软件测试、软件性能优化等方面都有的了解。 本书既聚焦于Go语言,又不限于Go语言,介绍了开发者在使用Go语言时经常犯的100个经典错误,内容侧重于语言核心和标准库。对大多数错误的讨论都提供了具体的示例,以说明在什么时候容易犯这样的错误。这不是一本教条主义的图书,每个解决方案都详细传达了它应该适用的上下文。
虽然技术在进步,硬件也越来越物美价廉,但如今软件工程师仍需要关注程序的性能优化。本书将介绍软件效率问题、Go语言快速入门知识、如何实现高效编程,告诉大家如何高效进行性能优化,以及何时进行,并给出需要的工具和相关知识,让你使用较少的资源实现高效编程。
本书教你如何从基于时间的数据(如日志、客户分析和其他事件流)中获得即时、有意义的预测。在这本通俗易懂的书中,作者通过带有注释的Python代码进行全面演示,你将学习用于时间序列预测的统计和深度学习方法。通过跟随书中的实例锻炼你的技能,你很快就会准备好建立自己的准确、有洞察力的预测。