本书从基础的知识开始,讲解Web开发的整个流程,展示如何使用Python做测试驱动开发。本书由三个部分组成。靠前部分介绍了测试驱动开发和Django的基础知识,并在每个阶段进行严格的单元测试。第二部分讨论了Web开发要素,探讨了Web开发过程中不可避免的问题,以及如何通过测试解决这些问题。第三部分探讨了一些话题,如模拟技术、集成第三方认证系统、Ajax、测试固件以及持续集成等。第2版全部使用Python 3,并针对新版Django全面升级,介绍了由外而内的测试驱动开发流程。本书适合Web开发人员阅读。
Go语言"入门易,精通难”。想要用Go语言写出优质的软件,不仅要了解Go语言的语法,还需要对Go语言的特性、软件的通用编写方法、软件项目的组织方法、并发程序设计、软件测试、软件性能优化等方面都有的了解。 本书既聚焦于Go语言,又不限于Go语言,介绍了开发者在使用Go语言时经常犯的100个经典错误,内容侧重于语言核心和标准库。对大多数错误的讨论都提供了具体的示例,以说明在什么时候容易犯这样的错误。这不是一本教条主义的图书,每个解决方案都详细传达了它应该适用的上下文。
《Python金融数据分析》详细阐述了与Python金融数据分析相关的基本解决方案,主要包括获取金融数据、数据预处理、可视化金融时间序列、探索金融时间序列数据、技术分析和构建交互式仪表板、时间序列分析与预测、基于机器学习的时间序列预测、多因素模型、使用GARCH类模型对波动率进行建模、金融领域中的蒙特卡罗模拟、资产配置、回测交易策略、识别信用违约、机器学习项目的高级概念、金融领域的深度学习等内容。此外,本书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。
本书分为上、下两大部分,共计22章。部分(~11章)由浅入深地介绍Python的基础知识,包括变量、数值、条件语句、文本字符串、循环语句、元组、列表、字典、集合、函数、对象、类、模块、库,等等。掌握这些基础知识将为运用Python奠定牢固的基础。第二部分(2~22章)介绍Python的应用,所涉及的领域包括Web应用、数据库、网络和机器学习。你将学会用Python处理时间、进行网络通信、完成数据科学任务等,还会了解并发的相关知识。
《数据有道 : 数据分析 图论与网络 微课 Python编程》是“鸢尾花数学大系—从加减乘除到机器学习”丛书的第三板块 ( 实践板块 ) 中的一本关于数据 科学的分册。“实践”这个板块,我们将会把学到的编程、可视化, 特别是数学工具应用到具体的数据科学、 机器学习算法中,并在实践中加深对这些工具的理解。 《数据有道 : 数据分析 图论与网络 微课 Python编程》可以归纳为 7 大板块—数据说、数据处理、时间数据、图论基础、图的分析、图与矩阵、图论实践。 这 7 个板块 ( 共 25 章内容 ) 都紧紧围绕一个主题—数据! 《数据有道 : 数据分析 图论与网络 微课 Python编程》以数据为名,以好奇心和疑问为驱动,主动使用“编程 可视化 数学”工具进行探索。《数据有道 : 数据分析 图论与网络 微课 Python编程》将 会回顾鸢尾花书前五本主要的工具,让大家对很多概念从
《利用Python调试机器学习模型》详细阐述了利用Python调试机器学习模型的基本解决方案,主要包括代码调试、机器学习生命周期、为实现负责任的人工智能而进行调试、检测机器学习模型中的性能和效率问题、提高机器学习模型的性能、机器学习建模中的可解释性和可理解性、减少偏差并实现公平性、使用测试驱动开发以控制风险、生产测试和调试、版本控制和可再现的机器学习建模、避免数据漂移和概念漂移、通过深度学习机器学习调试、高级深度学习技术、机器学习进展简介、相关性与因果关系、机器学习中的安全性和隐私、人机回圈机器学习等内容。此外,本书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。 本书可作为高等院校计算机及相关专业的教材和教学参考用书,也可作为相关开发人员的自学用书和参考手册。
本书分为上、下两大部分,共计22章。部分(~11章)由浅入深地介绍Python的基础知识,包括变量、数值、条件语句、文本字符串、循环语句、元组、列表、字典、集合、函数、对象、类、模块、库,等等。掌握这些基础知识将为运用Python奠定牢固的基础。第二部分(2~22章)介绍Python的应用,所涉及的领域包括Web应用、数据库、网络和机器学习。你将学会用Python处理时间、进行网络通信、完成数据科学任务等,还会了解并发的相关知识。