本书共分十二章,每章又分若干节,在章节设置上和同济大学六版高等数学教材基本一致,涉及的内容涵盖了高等数学的全部主题。在本书中每章除最后一节外每节包括两大部分内容:知识要点:简要对每节涉及的基本概念
《物理学的进化》是著名科学家、物理学奠基,主要介绍物理学观念从伽利加略牛顿时代的经典理论发展到现代的场论、相对论和量子论的演变情况。其中选择了几个主要的转折点来阐明经典物理学的命运和现代物理学中建立新观念的动机,从而指引读者怎样运河找寻观念世界和现象世界的联系。《物理学的进化》问世后,物理学有了空前的发展,不过这《物理学的进化》只是讨论物理学的重要观念,它们在本质上并没有变化,仍然适合读者阅读。
本书特色: 本书依据*颁布的《高等数学课程教学基本要求》(经管、文科类),根据作者多年的教学实践,按照新形势下教材改革的趋势编写。 本书贯彻“掌握概念、强化应用”的教学原则,加强数学思想和数学概念与经济生活等实际问题的结合,强化利用数学方法求解数学模型,注重学生理解基本概念,掌握基本方法,了解高等数学在经济中的应用。 本书精心选择教材的内容,从实际应用的需要(实例)出发,淡化了深奥的数学理论,强化了几何说明。 每章都配有学习目标、学习重点、大量的例题和习题、小结、复习题、自测题等,便于学生总结学习内容和学习方法,巩固所学知识。
本书分为代数、几何、逻辑与思维方法三篇。前两篇补充一些数学知识,后一篇则是介绍逻辑知识及思维方法。本书的主要目的是弥补大学和中学数学教学上的脱节问题:首先是数学知识上的脱节;其次是逻辑和思维方法上的脱节。中学数学侧重于技巧,而大学数学要求对概念有深刻的理解,推理要严密等。本书旨在为大学生铺路架桥,让他们顺利地从中学过渡到大学数学的学习。本书还可作为大、中学数学教师的进修用书,对研究教材改革的同志也具有一定的参考价值。
本书严格按照“线性代数课程教学基本要求“在南京大学多年教学经验的基础上精心编写而成的,是一本大学数学基础课程的教材。本书介绍线性代数的基本理论和基本方法,内容包括行列式、矩阵、向量、线性方程组、矩阵的特征值与特征向量、二次型、线性空间与线性变换、内积空间。本书每章中都附有丰富的练习和习题,练习供学生课堂使用,习题供学生课后使用。书后对几乎全部的习题都做了比较完整的解答,使本书具有更好的适用性。本书力图体现线性代数教学改革精神,在选材上深入浅出,理论上引人入胜,方法上精巧多彩。这样编排的目的在于使读者深刻领会数学思想,掌握数学技巧,提高数学能力。本书可作为高等院校开设线性代数课程的各专业的教材,也可以作为考研忱者备考的参考用书。
博弈论是在西方哲学、经济学、心理学、信息论的基础上发展创新出来的思维利器。我们身边无时无刻不存在着博弈,生活中常见的一些问题都能够运用博弈论来寻找*的解决之道,用博弈智慧来指导生活决策。 《从零开始读懂博弈论》通过图文结合的方式介绍博弈论的基本思想及运用,通俗易懂,饶有趣味,并寻求用博弈的思维智慧来指导生活和工作。读者可以在生活中常见的事例中轻松领会博弈思维的精髓,获取开启人生智慧的金钥匙。
本书内容以说明原子结构为中心,从光谱学、电磁学、X射线等方面的实验事实和总结出的规律,汇总到原子结构的全貌.书中有“量子力学初步”一章,介绍阐述有关问题所需要的量子力学基本概念.全书在围绕中心目标述及
本书是同济大学主编的《高等数学》第五版的配套复习参考书,为上、下册合订本。本书对原教材中的基本概念做了详尽的剖析,并通过大量的考研真题和典型例题帮助读者掌握基本知识点和提高综合解题能力。 在每章的开头,有本章内容简介、考点精要和考点分析表(自1990年后考研数学试卷中考到的知识点的分数分布统计表);每章的结尾,有本章考研大纲要求。每章的每节均以表格的形式给出了本节的基本概念、性质及定理,其中“说明”和“注意”是剖析该概念的内涵和强调对该概念理解上易出错的地方;“常考题型”部分列出了在考研及平时考试中可能遇到的各类题型,题型分析说明了该题型的特点及具体解题方法,所给的例子以历年考研真题及典型例题为主,详尽的解题步骤及精炼的旁注让读者能快速掌握各类题型的解题方法和技巧。每章结尾部分还
本手册以高等数学的公式为主线,以简洁的形式分门别类地详细介绍了高等数学的主要公式、定义、定理、图形以及各种题型的解题方法和技巧.除了高等数学教材中的基本内容和公式、常见解题方法和技巧外,本手册还大量收集了一般教材中没有的,但在解题中有用的公式、特殊的解题方法和技巧. 使用本手册可以帮助读者迅速复习、回忆和掌握高等数学的公式、解题方法和技巧,以提高高等数学的学习效率、解题能力和考试成绩. 本手册适合学习高等数学(微积分)的大学一年级学生,也适合复习高等数学并准备考研究生的高年级学生,对学习和复习高等数学的其他读者也有参考价值. 本手册还可作为高等数学教师的一本方便的教学参考书和工具书.
《赵老师讲平面几何(下)辅助线及通用的方法》是讲平面几何解题思路及其训练的系列丛书的下册,重点讲解平面几何中比较重要的辅助线及通用的几何解题方法。老师们通过学习此书可以掌握平面几何中难度技巧较高的方法,并能辅导学生举一反三、触类旁通,使学生掌握一整套行之有效的学习几何和解几何题的高层次方法。可以说,此书为学习平面几何提供了一把金钥匙,是全国广大中学生(特别是初中生)及中学数学教师的良师益友。
本练习册与同济大学数学系编写的第七版《高等数学》下册(高等教育出版社出版)相配套,共包括两部分内容:练习题和参考答案。按时完成练习作业是理工科大学生巩固高等数学课堂学习效果的基本要求,所附参考答案可方便学生完成作业后及时检查。 为了方便教师和学生收交作业,本练习册分为A、B两册,即奇数周作业为A册,偶数周作业为B册。
《高等数学(第四版 下册)》的主要特色是以现代数学的观点审视经典的内容,科学组织并简洁处理相对成熟的素材,对分析、代数、几何等方面作了统一的综合处理,揭示数学的本质、联系和发展规律;注重数学概念的实际背景和几何直观的引入,强调数学建模的思想和方法;在适度运用严格数学语言的同时,注意论述方式的自然朴素、易于理解;配有丰富的图示、多样的例题和习题,便于学生理解和训练。全书的深度和广度能适应多数专业的数学基础教学需要。下册包括多元微积分、级数、常微分方程、概率论与数理统计。《高等数学(第四版 下册)》可作为高等学校理科、工科和技术学科等非数学类专业的教材,也可供经济、管理等有关专业使用,并可作为上述各专业的教学参考书。