本书按照《高等数学》 (同济七版)章节顺序,并 参照 制订的 考研数 学考试大纲 和中国数学会 制定的 中国大学生数学竞 赛大纲 编写,包括十二个 章节的同步检测以及上册( 前七章)与下册(后五章) 的综合检测,共计十四套试 卷,每套试卷又含ABC三份 检测试卷,其中,A卷是基 本内容难度,夯实基础;B 卷是学校考试难度,强化训 练;C卷是考研竞赛难度, 拓展提升,对于试卷中的每 一道题目,均有配有详细的 解答过程。 本书内容丰富、题型多 样、解析专业,可作为理工 科大学一年级学生学习高等 数学的配套资料,同时还可 以作为准备复习考研和参加 大学数学竞赛的参考书及其 相关教师的参考资料。
本套《高等数学》教材是福建省教育厅高校精品课程立项建设的一个成果,是我校长期开设这门课程的经验总结,凝聚了校内、外许多老师多年辛勤劳动的心血。 吴炯圻、陈跃辉、唐振松编著的《高等数学及其思想方法与实验(上)》以数学思想方法为指导,阐述微积分学的基本内容、基本方法和有关应用,分为上下两册。上册(1~6章)包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用和微分方程;下册(7~11章)包括空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分和无穷级数。各章均附有数学实验和思想方法选讲各一节,书末还附有几种常用曲线、积分表、Mathematica的使用简介与各章习题的参考答案。 《高等数学及其思想方法与实验(上)》适用于一般理工科、经济、管理各专业学
邱法玉、宋金丽主编的《高等数学学习辅导与同 步练习(国家骨干高职院校基础课系列教材)》根据教 育部制定的《高职高专教育高等数学课程教学基本要 求》,以国家骨干高职高专办学方向和培养目标为指 导,兼顾各专业对高等数学知识和技能的基本需求编 写而成。 本书既从宏观上对各章知识点、重难点、内在联 系进行系统的梳理,又从微观上对重点题型、解法、 注意事项进行分门别类的总结与例题示范,有利于学 生对知识的掌握以及应用能力的提高。 本书与国家骨干高职院校系列教材《高等数学》 配套使用,一方面能做到对教材知识点的呼应、总结 与强化,另一方面题目类型全、覆盖面广,题目从基 本到综合,由易到难、循序渐进,充分注重基础知识 的巩固、基本方法和自学能力、解题能力、应用能力 以及分析问题、解决问题能力的训练
本书结合当前江苏省专转本选拔考试高等数学考纲要求,其编写目的是为广大考生提供一本适用、高效的复习资料,内容包括极限和连续、一元函数微分、一元函数积分、多元函数微分、多元函数积分、微分方程、级数、行列式、矩阵及其运算、线性方程组的解等。本书严格按照江苏省专转本选拔考试高等数学考纲中各章的顺序配备练习,这些题目与历年考题仿真度极高,既覆盖了大纲范围内的重点和难点,又十分注重解题技巧和方法,考生通过考前强化训练,有望获取高分甚至满分。
本书主要是根据“数学建模”课程的教学和数学建模竞赛培训活动的实际需要,以及作者多年从事相关工作的实践经验和体会编写而成的,从内容上突出体现了“广、浅、新、用”的现代应用特点。 主要内容包括量纲分析,集合分析、微分方程、差分方程、插值与拟合、层次分析、概率分布、数理统计、回归分析、线性规划、整数规划、非线性规划、动态规划、排队论、对策论、随机性决策分析、多目标决策分析、图论、模糊数学和灰色系统分析等20大类数学建模方法,每一种方法都有相应的应用案例分析及参考案例。附有历年中国大学生数学建模竞赛和美国大学生数学建模竞赛的问题,以及MATLAB的使用简介。 本书可作为专科生、本科生、研究生的“数学建模”课程教材外,还特别适用于数学建模竞赛的培训教材,以及供从事应用研究的工程技术人员参考之
《高等数学习题精选精解》由山东大学张天德教授、蒋晓芸教授主编。山东大学刘建亚教授、吴螓教授对全书作了仔细的校审,并对部分习题提出了更为精炒的解题思路。该书可以作为在读大学生同步学习的优秀辅导书,也可以
本书针对当代强劲的科技综合化趋势和全球经济一体化大潮,以及各类人员在当前形势下提高素质、拓宽视野、加强沟通的新要求,将工程技术与经济管理相综合,正面展开对工业系统的介绍,通过对能源、冶金、化工、机械、汽车、电子、轻工以及建筑等8个主要工业部门的介绍,深入浅出地展现了这些领域的生产过程,并从中提炼出系统观、结构性、社会化、产业政策、管理沟通、市场开拓、文化传统和可持续发展等基本概念,使读者对整个工业体系从技术过程到产业发展形成一个比较全面的认识,以建立实践性的认识方法和思维方式。本书作为清华大学文化素质教育核心课程教材,已有多年教学实践,在加强学生通识教育方面取得了很好的教学效果。本书也可作为干部培训教材、各类人员的继续教育教材以及了解工业知识的科普读物。
大学数学公式定理手册(概率统计)教材基础知识 重点难点点拨 规律技巧方法 完全依照大学课程教学要求进行编写,汇集经典版本的精华,囊括了《概率统计》中所有概念、公式、定理、解题方法以及在使用时要注意的问题,并精选典型例题帮助理解和记忆。灵活运用图表、网络图等形式使知识更加条理化、清晰化。名师点拨重点难点,举重若轻,化难为易。规律方法科学实用,能让读者举一反三,触类旁通。
《世界塑料钞鉴赏》图录的塑料钞除少数几张外,其余为编者的藏品。书中展示了迄今世界上已发行塑料钞的40多个国家和地区的各种塑料钞,同时附有该国(地区)的简况[包括中英文国(地区)名、地理位置、面积、人口、首都、货币名称、国际货币符号()等资料],并对每张塑料钞的种类、面值、发行年份、尺寸和钞票的正背面图案等给以力求详尽的注释。
高等数学是大学学习过程中最重要的公共课。在研究生入学考试中也占据举足轻重的地位。本书可配合高等数学同济8版教材使用,也可独立使用,本书由全国知名教授张天德编写,帮助大学生们顺利完成高等数学课程和复习!
本书章节划分与北京大学第五版《高等代数》一致。包括18套单元检测卷、2套阶段检测卷、2套期末专题复习卷以及2套期末检测卷,共24套试卷及解析。试卷内容包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、λ-矩阵、欧几里得空间等。 单元检测卷分为A卷和B卷。A卷注重基础知识和解题能力的考查,难度与大学期中、期末考试相当,可作为日常复习检测使用;B卷注重能力提升,题目综合性较强,包含了相当一部分的考研、大学生数学竞赛真题,可作为考研及大学生数学竞赛复习使用。 阶段检测卷分为A卷和B卷。选题时注重对知识点的全面覆盖,保证对知识点考查不重复;试卷编排难易适中,充分体现了“重视基础、淡化技巧”的教改风格。 期末专题复习卷设置计算专题及证明专题两个专题复习卷,直击考试痛点,学习针对性强,起到事半
《高等数学习题精选精解:专科版》由张天德,范洪军主编
《高等数学同步检测卷.下册》由张天德,孙钦福主编
本书针对当代强劲的科技综合化趋势和全球经济一体化大潮,以及各类人员在当前形势下提高素质、拓宽视野、加强沟通的新要求,将工程技术与经济管理相综合,正面展开对工业系统的介绍,通过对能源、冶金、化工、机械、汽车、电子、轻工以及建筑等8个主要工业部门的介绍,深入浅出地展现了这些领域的生产过程,并从中提炼出系统观、结构性、社会化、产业政策、管理沟通、市场开拓、文化传统和可持续发展等基本概念,使读者对整个工业体系从技术过程到产业发展形成一个比较全面的认识,以建立实践性的认识方法和思维方式。本书作为清华大学文化素质教育核心课程教材,已有多年教学实践,在加强学生通识教育方面取得了很好的教学效果。本书也可作为干部培训教材、各类人员的继续教育教材以及了解工业知识的科普读物。
《高等数学考点分析与题解(2013版专升本考试用书)》由邱成功主编,全书共分为10章,内容包括函数、极限和连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分,微分方程,向量代数与空间解析几何,多元函数微分学,二重积分,无穷级数。各章分“考试要求”、“考试内容”、“典型例题”、“历年真题”四部分。“考试要求”部分精炼地给出了对考试的具体要求。“考试内容”部分详细地给出了与考试有关的章节内容,保证各个知识层次的学生均可从中获益。“典型例题”部分根据历年考试及对知识的掌握要求,既有基础性题目,又有新颖和创造性的题目,并附有详细的解析过程,可让学生在学习知识的同时,掌握解题的方法和技巧,收到事半功倍的效果。“历年真题”部分将近几年专升本高等数学考试真题按章节内容列出,且给出详细的解
本书对计算机科学方面的数理逻辑进行了综合介绍,涵盖命题逻辑、谓词逻辑、模态逻辑与代理、二叉判定图、模型检测和程序验证等内容。本书主要讨论有关软硬件规范和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法、Lowenheim-Skolem定理等,并介绍了Alloy语言和NuSMV工具等内容。 本书适宜作为高等院校计算机及相关专业的数理逻辑/形式化方法课程的教材,也可供相关研究人员和专业人士参考。
本练习册与同济大学数学系编写的第七版《高等数学》下册(高等教育出版社出版)相配套,共包括两部分内容:练习题和参考答案。按时完成练习作业是理工科大学生巩固高等数学课堂学习效果的基本要求,所附参考答案可方便学生完成作业后及时检查。 为了方便教师和学生收交作业,本练习册分为A、B两册,即奇数周作业为A册,偶数周作业为B册。
针对当前高等数学教学的现状分析,《高等数学的教学改革策略研究》一书应需而生。本书主要围绕高等数学的教学思想改革策略研究、高等数学的教学内容改革策略研究、高等数学的教学主体改革策略研究、高等数学的教学目标改革策略研究、高等数学的教学方法改革策略研究、高等数学的教学模式改革策略研究、高等数学的教学评价改革策略研究、高等数学的教学实践改革策略研究等内容进行了阐述,以期通过本书的分析研究,能够对高等数学的教学改革有所助益。