《超级通俗考研数学:攻坚站之高等数学》的一大特点是通俗易懂,深入浅出。主要内容包括高等院校高等数学课程的所有内容,针对考研数学的特殊性进行了强化,同时对于一些传统课本中的重点、难点、疑点以及被忽视的一些潜在要点做出了全新诠释。另外,由于作者常年从事考研培训,《超级通俗考研数学:攻坚站之高等数学》还包括相当多的不传之秘——考研数学的套路。
《混沌数学基础》主要从数学角度讲述混沌的概念、性质、基本理论与解析判定方法。《混沌数学基础》引入了Li—Yorke混沌与Devaney混沌概念并讨论其条件化简问题,证明了三角帐篷映射、蒙古包映射、符号空间上移位映射以及平面Smale马蹄映射等映射或系统的混沌性,给出了“周期三意味着混沌”的详细证明,证明了Devaney混沌与Li—Yorke混沌等在拓扑共轭下的不变性,讲述了拓扑熵及其与Li—Yorke混沌的关系等并展示了用Melinkov定理判别系统混沌性的方法。
本书对计算机科学方面的数理逻辑进行了综合介绍,涵盖命题逻辑、谓词逻辑、模态逻辑与代理、二叉判定图、模型检测和程序验证等内容。本书主要讨论有关软硬件规范和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法、Lowenheim-Skolem定理等,并介绍了Alloy语言和NuSMV工具等内容。 本书适宜作为高等院校计算机及相关专业的数理逻辑/形式化方法课程的教材,也可供相关研究人员和专业人士参考。
本书是一本参赛的指导书,同时也是一本学习微积分的复习书。我们对微积分的内容进行整理归纳出知识要点,并通过典型例题的解法分析加以综合,使读者对微积分的每个知识点得以融会贯通。当前,我国从小学到高中都是围绕着升学的指标指挥棒转,学习为应试,其结果是:会套模式解题,不会尝试分析解决问题,长期的教育熏陶,使人形成了思维惯性。我们希望通过数学竞赛,通过本书的学习,能慢慢改变你的思维方式。数学需要运算能力、空间想象能力和抽象思维能力等,做习题对学好数学是重要的,在做运算难度大、步骤长及需要技巧的数学题的过程中有时最能获得数学知识,最能培养分析问题、解决问题的能力。看书和动手解题相结合必能使你学会如何去理解数学知识、如何去分析推理,从而对背景和题型稍新的数学问题不再束手无策,最终培养自己
数理逻辑是计算机科学的基础之一,在模型与系统的规约与验证等方面有着广泛的应用。随着当今软硬件产品日趋复杂,数理逻辑已经成为越来越多设计开发人员的日常工具。 本书适合作为高等院校计算机及相关专业的数理逻辑/形式化方法课程,涵盖了命题逻辑,谓词逻辑、模态逻辑与 Agent、二元决策图、模型检查和程序验证等内容。与传统数理逻辑教科书相比,它的主要特色就是紧紧围绕软硬件规约和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法,紧致性理论和Lowenhenm-Skolem定理,并介绍了Alloy语言和Nusmv工具。 本书自出版以来受到广泛好评,已经被包括美国普林斯顿、卡内
本书对计算机科学方面的数理逻辑进行了综合介绍,涵盖命题逻辑、谓词逻辑、模态逻辑与代理、二叉判定图、模型检测和程序验证等内容。本书主要讨论有关软硬件规范和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法、Lowenheim-Skolem定理等,并介绍了Alloy语言和NuSMV工具等内容。 本书适宜作为高等院校计算机及相关专业的数理逻辑/形式化方法课程的教材,也可供相关研究人员和专业人士参考。