数理逻辑是计算机科学的基础之一,在模型与系统的规约与验证等方面有着广泛的应用。随着当今软硬件产品日趋复杂,数理逻辑已经成为越来越多设计开发人员的日常工具。 本书适合作为高等院校计算机及相关专业的数理逻辑/形式化方法课程,涵盖了命题逻辑,谓词逻辑、模态逻辑与 Agent、二元决策图、模型检查和程序验证等内容。与传统数理逻辑教科书相比,它的主要特色就是紧紧围绕软硬件规约和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法,紧致性理论和Lowenhenm-Skolem定理,并介绍了Alloy语言和Nusmv工具。
本书是作者多年来在大学生数学竞赛辅导和考研辅导经验的基础上编写而成的.全书共分为13 章,每章包括4 个模块,即知识要点、典型例题分析、深化训练以及深化训练详解.本书编写的目的主要有两个:一是帮助工科类、经管类本科生备考全国大学生数学竞赛,使学生能够在短时间内迅速掌握各种解题方法和技巧,提升学生综合分析问题、解决问题的能力;二是为了满足工科类、经管类本科生考研的需要. 在例题和习题选编方面,精选了部分有代表性的数学竞赛真题和考研真题,同时注重例题、习题的创新,按题型分类进行合理编排,使学生能够尽快地适应考研题型,从容应对考试.本书既可以作为普通高等院校工科类、经管类本科生参加全国大学生数学竞赛的辅导用书,也可以作为工科类、经管类本科生考研深化训练用书.