本书从课程评价领域的发展与国际现状,课程评价的方法,我国课程评价模型的建构与实践三个方面进行了系统论述。首先,本书对课程评价的理念与内涵、课程评价的模型及其发展历程进行回顾,对当前世界范围内主要国家的课程测量实践和国际课程评价项目进行比较与总结。其次,从混合方法论的视角出发,对课程评价方法进行梳理与分析。在此基础上,结合我国课程实际,建构起具有中国特色的课程评价模型和适合我国课程实情的课程测量与评价方法体系。*后,以我国小学数学为例,将所构建的课程评价理论模型进行逐层落实,实现对我国小学数学课程从宏观到微观层面的系统测量与评价,以验证所构建的课程评价模型及评价方法体系的合理性与科学性。
本书是作者运用自己的独到的科学见解为全国普通高等学校本科生编写的 “高等代数”教材,内容包括:线性方程组的解法,行列式,数域K上的n维向量空间,矩阵的运算,一元多项式环和n元多项式环,线性空间,线性映射,双线性函数,二次型,具有度量的线性空间等。本书具以下有鲜明的特色:以研究线性空间及其线性映射为主线,科学地安排内容的讲授体系;用数学的思维方式编写教材,使学生既比较容易地学到“高等代数”的基础知识和基本方法,又受到数学思维方式的熏陶和训练,终身受益;编写体例新颖,每节均有“内容精华”“典型例题”“习题”三个栏目。
本书根据高等院校理工类本科专业高等数学课程的教学大纲及考研大纲编写而成,并在第四版的基础上进行了修订和完善。引入了大量的数学实验,可以通过扫描对应二维码即时实现实验操作。本书共分上下两册,本册包括函数与极限、一元微分学、一元积分学、微分方程等知识。本书可作为高等院校(少课时)、独立学院、成教学院、民办院校等本科院校以及具有较高要求的高职高专院校相关专业的数学基础课教材,并可作为上述各专业领域读者的教学参考书。
本书是依据*颁布的《工科类本科数学基础课程教学基本要求(2014年版)》编写的。编者改革了高等数学教材传统编写方式,本书编写中重背景、重体系、重探究、重体验、重实践、重反思;知识展现通俗、易懂、简洁、形式多样,便于教师教学和学生自学;每一节设计了一些问题讨论题,这些问题基本是开放性的,目的是帮助学生检验学习效果,引导学生加深对知识的理解,提高思维深刻性。每章结尾按基础知识考查和综合能力提高设计了A,B组测试题,供学生自我检测。本书分上、下两册,共11章,上册包括数列与函数极限、一元函数的导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、向量代数与空间解析几何等内容。
本书按照工科及经济管理类 本科数学基础课程(线性代数部分)教学基本要求 ,并结合当前大多数高等院校的学生基础和教学特点编写而成.全书以通俗易懂的语言,全面而系统地讲解线性代数的基本知识,包括行列式、矩阵、向量与线性方程组、矩阵的特征值与相似对角化、二次型、线性空间与线性变换等六章内容.每章分若干节,每节都配有习题,同时每章还配有综合习题,书末附有习题和综合习题的参考答案. 本书理论系统、举例丰富、讲解透彻、难度适宜,适合作为普通高等院校工科类、理科类(非数学专业)、经济管理类有关专业 线性代数 课程的教材使用,也可供广大考研学子选作复习线性代数的教材,还可供相关专业人员和广大教师参考.
本书是《高等数学(经、管类)》教材的配套习题册, 各章节的编排与教材对应.本书共10章,包括函数与极限、导数与微分、微分中值定理及其应用、不定积分、定积分及其应用、空间解析几何初步、多元函数微分学、二重积分、无穷级数、微分方程与差分方程等内容.
《高等数学(工科类)(第二版)》是“高等职业教育数学系列教材”之一的工科类“高等数学”课程的教材。本书按照*制定的工科类“高等数学课程教学基本要求”进行编写,反映了当前高等职业教育培养高素质实用型人材数学课程设置的发展趋势及教学理念。 《高等数学(工科类)(第二版)》突出体现了作者在教学线积累的丰富教学经验,注重对学生基础知识的传授和基本能力的培养。对数学概念的引入强调几何背景和物理意义,对基础训练既强调对概念的理解又兼顾计算的基本技能.为此,对重点内容作者设计了“想一想”、“试一试”、“注意”等小标题,以启发读者思考.对有专升本试题的章节,其每小节的习题分为(A)、(B)两组,其中(A)组是基础题,(B)组是选自专升本的试题. 书后附有习题答案或提示.每章后设计了有关本章内容的
本书是一本用于同名课程双语教学的英文教材,编者参考多本有关的经典原著英文教材,按照国家*对本课程的基本要求,结合多年的教学实践编撰而成.内容分两部分,共8章。第1~6章为复变函数部分,包括complexnumbersandfunctionsofacomplexvariable(复数与复变函数),analyticfunctions(解析函数),complexintegrals(复积分),series(级数),residues(留数),conformalmappings(保形映射)。第7章和第8章是积分变换部分,包括Fouriertransform(傅里叶变换)和Laplacetransform(拉普拉斯变换)。书中各章节都安排了足够量的例题,在每章后也安排了大量精选的习题,并按大纲的要求及难易程度分为A、B两类。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:误差分析、解非线性方程的数值方法、解线性方程组的直接方法、插值法、数值积分。本书每章末均附有丰富、实用的习题。
高等数学是大学理工科及经济管理类专业的重要基础课,是培养学生形象思维、抽象思维、创造性思维的重要园地。 本书从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用.书中的经典问题解析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到了事半功倍的效果。 本书是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
本书是配套高等数学教学使用的学生课后练习的自测题,本书对学生掌握《高等数学》提出了较高要求,可作为对高等数学要求较高的专业的学生使用。
《高等数学解题全攻略(下卷)》从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用。书中的经典问题解析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到事半功倍的效果。《高等数学解题全攻略(下卷)》是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
本书根据江苏省普通高等学校非理科专业高等数学竞赛委员会制订的 高等数学竞赛大纲 、*制订的 考研数学考试大纲 和中国数学会制定的 中国大学生数学竞赛大纲 编写。本书分极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、重积分、曲线积分和曲面积分、空间解析几何、级数、微分方程等专题,每个专题又含 基本概念和内容提要 竞赛题解析 和 练习题 三个部分。本书竞赛题选自全国、江苏省、浙江省、上海市、北京市等省市普通高等学校非理科专业历届高等数学竞赛试题,南京大学等国内高校历年大学数学竞赛试题,以及莫斯科大学等国外高校大学生数学竞赛试题。本书可供各类高等学校的大学生作为学习高等数学的参考书,特别有益于成绩优秀的大学生提高高等数学水平
本套书作为大学 高等代数 课程的创新教材,是*优秀教学团队(北京大学基础数学教学团队)课程建设的组成部分,是*教学名师多年来进行高等代数课程建设和教学改革的成果。本套书以讲述线性空间及其线性映射为主线,遵循高等代数知识的内在规律和学生的认知规律安排内容体系,按照数学思维方式编写,着重培养数学思维能力。上册内容包括线性方程组,行列式,n 维向量空间Kn,矩阵的运算,矩阵的相抵与相似,以及矩阵的合同与二次型等。下册内容包括一元和n 元多项式环,线性空间,线性映射,具有度量的线性空间,以及多重线性代数。书中每节均包括内容精华、典型例题、习题,章末有补充题,还特别设置了 应用小天地暠板块。本书内容丰富、全面、深刻,阐述清晰、详尽、严谨,可以帮助读者在高等代数理论上和科学思维能力上达到相当的高度。本书适合用作综合大学、高等师
本套书是大学“高等代数”课程的辅导教材,是作者多年来在北京大学从事高等代数数学工作的结晶。本套书共有11章,分上、下两册。每章节主体结构包括内容精华、典型例题、习题三部分,章末还有补充题。本书阐述了高等代数的理论,总结了高等代数中重要的典型题型及考研题型,提炼了解题的规律、方法和技巧,旨在通过对理论的阐述以及解题方法和技巧的分析,使读者能掌握理论,举一反三、触类旁通。本书可作为“高等代数”或“线性代数”课程的教学参考书,也可供从事高等代数或线性代数教学的教师参考,还可作为工学、理学、经济学、管理学等学科专业硕士生入学考试数学科目的复习用书。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
几何是数学学习的基础之一,借助几何学,我们能搭建房屋、丈量土地、观测星空,还能设计滑梯、装饰地板……连一副小小的七巧板都能催生出众多数学成果。本书从建筑、测量、图形游戏等角度讲述了有趣的几何小故事,不仅涉及直线形、圆、非圆曲线、立体几何等基础几何学知识,而且加入了图论、拓扑、组合几何、非欧几何等主题,“扩大”了美妙的几何世界。本书阐释了几何学知识,同时介绍了古今中外关于几何的逸闻趣事,展现了图与形的自然之美。本书尤其适合小学高年级学生和中学生阅读。
本书参照*高等学校数学与统计学教学指导委员会制定的工科类本科数学基础课程教学基本要求,配合学生学习《高等数学》课程而编写的一本教学参考书。全书共有十二章,每章按主要知识点分成若干小节,每小节均由三部分内容组成:1.内容提要:编者结合多年教学经验,对本小节的主要内容,按照基本概念、重要结论、方法等方面进行归纳总结,便于学生查找复习。2.重难点分析:给出本小节的重点、难点,并对重要内容进行强调,使学生学习心中有数,目的明确。3.典型例题:给出了本节的一些典型例题,并给出详细的分析和解答,供学生课后复习。
在保持与第三版内容体系和写作风格一致的前提下,本版遵循“坚持改革,与时俱进”的原则,对上一版中个别概念定义的叙述、定理的证明做了修改,对全书的文字表达进行细致推敲,对例题与习题进行了合理的增删。同时,本次修订充分利用二维码和APP应用技术,为读者提供微课视频、习题讲解视频、高等数学学习方法、每章学习指导、阶段性测试题、考研真题、数学家小故事等新形态资源,力求使教材更加完善,适应时代要求,便于教和学。《BR》全书内容包括:函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、多元函数微积分、微分方程与差分方程、无穷级数、高等数学实验。每节有习题,每章有总习题,书末附部分习题答案与提示。教材编写力图解决与中学数学的衔接问题,注重高等数学的应用,尤其是经济方面的应
本书主要讲述工程及物理中常用的数学方法,全书共分6章:第l章主要围绕广义函数介绍线性泛函分析的最基础的内容;第2章介绍积分变换中最重要的两种变换:Fourier变换与Laplace变换;第3章介绍二阶常微分方程的幂级数解,对常点和正则奇点附近的幂级数解的结构进行了详细的讨论,并介绍了涉及的几种重要的特殊多项式;第4章介绍稳态问题的解析方法;第5章介绍演化方程的解析方法,它们是热传导方程与波动方程的初值及初边值问题的解法;第6章介绍曲线坐标系中的分离变量法,这里只考虑球坐标系与柱坐标系中的分离变量法。全书突出广义函数在数学物理问题求解中的作用,并从微分流形的概念出发,对曲线坐标系中的微分算子给出了严格的推导,自成一休。
线性代数是数学的一个分支,它的研究对象是向量、向量空间(或称线性空间)、线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 《线性代数》是理工类和经管类高等院校学生必修的一门重要基础理论课程。它的基本概念、理论和方法,具有较强的逻辑性、抽象性和广泛的实用性。通过该课程的学习,能使学生掌握该课程的基本理论和基本方法,且对学生其他能力的培养(如逻辑推理能力、抽象思维能力)和数学素养的提高也有着重要的作用。这些理论方法和能力为一些后续课程的学习及在
《高等数学(第2版)(套装上下册)》是以*高等工科数学课程教学指导委员会制定的《高等数学课程教学基本要求》为标准,以培养学生的专业素质为目的,充分吸收编者们多年来教学实践与教学改革成果编写而成的。 《高等数学(第2版)(套装上下册)/21世纪普通高等教育应用型规划教材》分为上、下册.上册含函数与极限、导数与微分、微分中值定理与导数应用、不定积分、定积分及其应用、微分方程等内容,下册含向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分、无穷级数等内容.每节均配有习题,每章配有综合练习题,书末附有习题参考答案,便于教与学。 《高等数学(第2版)(套装上下册)/21世纪普通高等教育应用型规划教材》可供高等本专科院校工科各专业使用,也可供其他专业参考。
高等数学(理工类?第五版)(上册)的教学参考书,根据高等院校理工类本科专业高等数学课程的教学大纲及考研大纲编写而成,并在第四版的基础上进行了修订和完善。内容包含函数与极限、一元微分学、一元积分学等内容的学习辅导与习题解答。