偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
本书*、二、三、四版分别出版于1987年、1993年、2003年和2011年。基于作者20多年来从事数学建模教学、组织数学建模竞赛、开设数学实验课程以及编写相关图书的经验,参考国内外数学建模教材和教学单元,第五版在保持前四版基本结构和风格的基础上,进行补充与修订:增加了一些实用性较强、生活气息浓烈、数学推导简化的案例,改写、合并、调整了若干案例和章节,删除了个别案例,并对习题作了相应的修订。 本书可作为高等学校各专业学生数学建模课程的教材和参加数学建模竞赛的辅导材料,以及科技工作者的参考书。
《高等数学解题指南》是理工医农各专业的大学生学习 高等数学 课的辅导教材。两位作者在北京大学从事高等数学教学四十年,具有丰富的教学经验,深知学生的疑难与困惑。他们围绕着该课的基本内容与教学要求,根据学生初学时遇到的难点与易犯的错误,通过精心挑选的典型例题进行分析、讲解与评注,给出归纳和总结,以帮助学生更好地理解 高等数学 课的内容,掌握其基本理论和正确的解题方法与技巧。全书共分13章,内容包括:一元微积分,空间解析几何,多元微积分,无穷级数(包含傅里叶级数)与常微分方程等。在每一节中,设有基本理论内容提要,典型例题的讲解与分析,以及供学生自己做的练习题等部分,书末附有练习题的答案。为了适应不同程度学生的要求,本书还较系统地讲解了适量的综合题和一定难度的例题(以*号标出),这些内
本书从课程评价领域的发展与国际现状,课程评价的方法,我国课程评价模型的建构与实践三个方面进行了系统论述。首先,本书对课程评价的理念与内涵、课程评价的模型及其发展历程进行回顾,对当前世界范围内主要国家的课程测量实践和国际课程评价项目进行比较与总结。其次,从混合方法论的视角出发,对课程评价方法进行梳理与分析。在此基础上,结合我国课程实际,建构起具有中国特色的课程评价模型和适合我国课程实情的课程测量与评价方法体系。*后,以我国小学数学为例,将所构建的课程评价理论模型进行逐层落实,实现对我国小学数学课程从宏观到微观层面的系统测量与评价,以验证所构建的课程评价模型及评价方法体系的合理性与科学性。
本书是作者运用自己的独到的科学见解为全国普通高等学校本科生编写的 “高等代数”教材,内容包括:线性方程组的解法,行列式,数域K上的n维向量空间,矩阵的运算,一元多项式环和n元多项式环,线性空间,线性映射,双线性函数,二次型,具有度量的线性空间等。本书具以下有鲜明的特色:以研究线性空间及其线性映射为主线,科学地安排内容的讲授体系;用数学的思维方式编写教材,使学生既比较容易地学到“高等代数”的基础知识和基本方法,又受到数学思维方式的熏陶和训练,终身受益;编写体例新颖,每节均有“内容精华”“典型例题”“习题”三个栏目。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:误差分析、解非线性方程的数值方法、解线性方程组的直接方法、插值法、数值积分。本书每章末均附有丰富、实用的习题。
本书以简短的篇幅叙述了线性泛函分析的基础理论。全书共分5章。按章序分别讲解度量空间和赋范空间的拓扑知识与结构性质、有界线性算子和有界线性泛函的基本定理、共轭空间与共轭算子、Hilbert空间的几何学以及线性算子的谱理论。本书注重阐述空间和算子的基本理论,取材既有简洁的一面又有深入的一面,并适当引入了自反空间、一致凸空间等较新的内容,在突出基本理论系统的同时,有选择地叙述了在其他学科分支的应用。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
南开大学数学专业的高等代数与解析几何课是国家精品课程,其教材《高等代数与解析几何(第二版)》是普通高等教育“十一五”国家级规划教材,也是2007年度普通高等教育精品教材。本书给出了该教材除第10章仿射几何与射影几何外的习题的全部解答,也给出了在教学中积累的许多重要、有趣的题目及其解答,有的题目给了多种解答,有的题目给了一些注解,希望本书不仅对使用该教材的读者有些助益,对未使用该教材的读者也有所帮助。
本书首先介绍MATLAB语言程序设计的基本内容,在此基础上系统介绍各个应用数学领域的问题求解,如基于MATLAB的微积分问题、线性代数问题的计算机求解、积分变换和复变函数问题、非线性方程与*化问题、常微分方程与偏微分方程问题、数据插值与函数逼近问题、概率论与数理统计问题的解析解和数值解法等;还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、遗传算法、小波分析、粗糙集及分数阶微积分学等领域。本书可作为一般读者学习和掌握MATLAB语言的教科书,高等学校理工科各类专业的本科生和研究生学习计算机数学语言的教材或参考书,可供科技工作者、教师学习和应用MATLAB语言解决实际数学问题时参考,还可作为读者查询某数学问题求解方法的手册。
南极洲,是地球上唯一没有土著居民、唯一未被开发的大陆,同时也是一个自然资源宝库,是天然的科学研究圣地。 我国的南极考察研究始于20世纪80年代,鄂栋臣教授在考察初期即四度出征,参与并见证了中国极地考察事业从无到高、从小到大的发展历程,是公认的“中国极地测绘之父”。30多年后的今天,在社会各界的强烈期待中,鄂教授终于同意将自己尘封多年的科考日记整理出版。全书真实准确地记录了中国极地考察惊险曲折、众志成城的感人历程,带领我们回到那个科技工作者在祖国需要时纷纷挺身而出、排除万难、开创新天地的火热时代,赋予我们走向未来的勇气和力量。
高等数学是高职高专院校各专业的公共必修课,是一门重要的基础课;既是学习后续课程必须掌握的基础知识,也是日后开展工作、解决问题应学会的基本方法。进入21世纪以后,我国的高职高专教育发展迅猛,教育改革不断深入,但教材建设却稍显滞后,教材体系改革迫在眉睫。目前已经出版的一批高职高专数学教材虽然在稳定教学秩序、主导教学方向方面起到了一定的作用,但细看起来,许多教材内容偏难、偏多、偏深,形式单一,与高职高专所要求的“必须、够用”有一定的差距。为了改变这一现状,我们在总结多年数学教学经验、探索数学教学发展动向的基础上,借鉴了高职院校数学教材改革中一些成功的实践。根据高职高专教育人才培养目标和*新修订的(高职高专教育高等数学教学的基本要求>,优选教学内容,编写了这套 教材。 在编写过程中,我们
This is the second volume of the textbook "Fundamentals of Advanced Math-ematics" written by the same authors. It includes vector algebra and analytic geometry in space, multivariable calculus, and linear ordinary differential e-quations. The intentions and features are as introduced in the preface to the first volume. We repeat here the important advice to students in the first vol-ume, as it is equally important for this second volume. In order to learn calculus, it is not enough to read the textbook as if it were a newspaper. Learning requires careful reading, working through exam-ples step by step, and solving problems. Solving problems requires more than imitation of examples. It is necessary to think about what the problem really asks and to develop a method for that particular problem. If something is still not clear after you have tried to understand it, you should ask a classmate, a more advanced student, or your teacher. If a classmate asks you a question, you may learn a great deal from exp
刘吉佑、赵新超、陈秀卿编*的《高等数学解题 法(第2版)》编写目的是为读者学习高等数学、提高 解题技能和熟练程度提供帮助。全书收录的题目比较 典型,也有一定难度,总共归结为二十九讲。内容包 括预备知识、*限与连续、一元函数微分学、一元函 数积分学、多元函数微分学、多元函数积分学、无穷 级数、常微分方程等。每一讲分为内容要点、例题选 讲、练习题和答案与提示四个模块。例题选讲给出了 比较详细的解答或证明,而练习题则只给出答案或提 示,以便给读者留有充分的发挥空间。对于一些特别 需要引起读者重视的解题方法或解题思路,书中加以 评注 。本书内容覆盖了理工科大学高等数学课程 的基本要求和国家研究生数学入学考试的基本要求。 本书可作为 高等数学解题法 课程的教材和学 生学习高等数学的参考书,也可作为参加硕士研
《高等数学》根据高等院校理工类本科专业高等数学课程的*教学大纲及考研大纲编写而成,并在第三版的基础上进行了修订和完善,注重数学概念的实际背景与几何直观的引入,强调数学建模的思想和方法,紧密联系实际,服务专业课程,精选了许多实际应用案例并配备了相应的应用习题,增补并调整了部分例题与习题,书中还融入了数学历史与数学建模的教育。 本次升级改版的另一重大特色是:每本教材均配有网络账号,通过它可登录作者团队为用户专门设立的网络学习空间,与来自全国的良师益友进行在线交流与讨论。该空间设置了课程论坛、学习问答、学习软件、教学视频、名师导学、教学博客、科学搜索等功能栏目,并全面支持文字、公式与图形的在线编辑、修改与搜索。 《高等数学》共分上、下两册,《高等数学(上理工类第4版21世纪数
本书是为学习高等数学的读者编写的,按国内通常高等数学教材布局,分为十二章,每章设若干节、知识脉络图和按章模拟考试。各节均设诸栏目,对高等数学的主要知识点进行归纳,释疑解惑,剖析典型例题,揭示解题方法与技巧,并配制两级测试题及答案与提示,供学生自测。 本书可作为高等学校师生的教学参考书,也可作为考研者考前复习、系统训练用书。
本书依据《工科类本科数学基础课程教学基本要求》编写而成,分为上、下两册。上册内容包括一元函数微积分学、微分方程,下册内容包括空间解析几何、多元函数微积分学、曲线与曲面积分、级数。每章末配有自测题以及综合提高题,方便读者练习与提高,书后附有习题、自测题、综合提高题的参考答案与提示,供读者查阅与参考。 本书注重数学思想的渗透和数学方法的介绍,淡化部分理论与计算技巧,内容由浅入深,例题由易到难,题解分析详细,以逐步使读者掌握利用高等数学知识分析问题、解决问题的基本思路与方法。 本书可供高等学校工科类本科各专业的学生选用。
本书根据高等院校医学类专业高等数学课程的数学大纲编写而成。内容包括函数与极限、一元函数微分学、一元函数积分学、多元函数微积分、微分方程、概率论初步、线性代数初步等知识。 本书在结构上力求严谨简明、语言表述上力求通俗易懂,同时注重数学知识在现代医学技术上的应用,并精选了大量有实际背景的例题和习题,以培养学生的数学素质、创新意识及运用数学工具解决实际问题的能力。书中融入了数学历史、数学文化的教育。书后配有内容丰富、功能强大的《医用高等数学多媒体学习系统》(光盘,附书后),其内容覆盖了课堂教学、习题解答、综合训练等模块。这些功能模块的设计将对学生们的课后复习、疑难解答、自学提高以及创新能力的培养起到积极的作用。本书叙述深入浅出、通俗易懂、论证严谨,在教学过程中,将光盘与本书配合
《高等数学》是按照新形势下高职教育改革的精神,结合编者多年的教学实践编写而成的。全书共分八章,主要内容为:函数、极限与连续,导数及其应用,不定积分,定积分及其应用,微分方程,多元函数微积分,无穷级数,线性代数初步。本书编写以“必需、够用”为度,在传统数学体系基础上,进行了必要的整合和创新,力求降低难度、分散难点,简明实用,通俗易懂,符合学生心理特征和认知规律。本书与同时出版的教学辅导用书《高等数学辅导与检测》(张绪林、秦少武 主编,化学工业出版社出版)配套使用。 本书可作为高职高专、成人教育及同类学校各专业的高等数学教材或学生的自学用书。也可作为专升本的教材或参考书。
本书是与主教材 高等数学教程 (上 下册,第3 版,范周田 张汉林编著,机械工业出版社出版) 配套的教学辅导书,集知识点总结 要点提示 例题演示 练习册 习题集于一体. 全书十二章既是一个整体又相互独立,可以分为十二个独立的练习册来使用. 书中精选例题568 道,练习题428 道,是学习高等数学必要的工具书.书中的第六章和第十二章的例题分别为一元微积分的综合例题和整个微积分的综合例题,习题则是近年的考研题或竞赛题. 除第六章 第十二章外,每一章的第 一部分和第二部分均给出了所在章节的主要内容和教学要求及要点提示,可以使读者方便地了解相关的重点及高等数学教学大纲的要求; 第三部分是精选例题,读者可以从中学习典型的解题思想与基本技巧; 第四部分是练习册,读者可以直接在书上完成练习; 第五部分是更多的习题.其中后两部分的习