素数论这一古老的数学分支,包含着许多诸如哥德巴赫问题那样的有趣而又艰深的难题。为了解决这些问题,素数论既借助也带动了其他数学分支的发展,因而素数论迄今仍是一个活跃的领域。 本书旨在介绍素数论的主要内容,书中谈到了许多的数论问题和猜想,简介了解决这些问题的方法和近代成果。介绍了我国数学家在这个领域里的重要贡献。本书的前一半只用到了中学的数学知识,而具备一些数学分析的知识后就可以读完后一半。全书写法简捷,深入浅出,可供中学生和广大数学爱好者阅读。
李继根等编的《矩阵分析与计算》是基于编著者多年从事矩阵分析类课程的教学改革实践经验,并结合学生的实际情况编写而成的,可作为高等院校理工科各专业研究生和工程硕士学习矩阵分析等相关课程的教材,也非常适合理工科高年级本科生学完线性代数课程后进一步学习之用。全书分为线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题七章。该教材既注意系统性,又注重体现工科特色,深广度适中,并适当略去了一些定理的证明。书中注重启发式教学,采用多种方式自然地引入基本概念和基本方法。同时,行文时非常注重几何直观及与类比,力争做到深入浅出、简洁易懂,以便于自学。书中还穿插了许多矩阵计算知识,并附有大量matlab代码,以渗透科学计算思维。此外,书中加入的大量数学史
全书共分三部分:部分皇冠上的明珠——哥德巴赫猜想简介与综述;第二部分中国解析数论群英谱;第三部分数论英雄——陈景润。 本书叙述了哥德巴赫猜想从产生到陈景润解决“1 2”问题的历史进程,突出记叙了陈景润在当时恶劣的生活环境中解决数学难题的勇气、智慧和毅力,他所取得的成绩,他所赢得的殊荣,为千千万万的知识分子树起了一面不凋的旗帜,召唤着青少年奋发向前。
《代数》(第3版):As I see it, the graduate course in algebra must primarily prepare studentsto handle the algebra which they will meet in all of mathematics: topology,partial differential equations, differential geometry, algebraic geometry, analysis,and representation theory, not to speak of algebra itself and algebraic numbertheory with all its ramifications. Hence I have inserted throughout references topapers and books which have appeared during the last decades, to indicate someof the directions in which the algebraic foundations provided by thiook areused; I have acpanied these references with some motivating ments, toexplain how the topics of the present book fit into the mathematics that is toe subsequently in various fields; and I have also mentioned some unsolvedproblems of mathematics in algebra and number theory. The abc conjecture isperhaps the most spectacular of these.
本书是国际上本有关高维哈达玛矩阵及其在电信与信息安全领域中的应用专著《TheoryandApplicationsofHigherDimensionalHadamardMatrices》的修订版,分为三个部分。部分重点研究经典的2维Walsh矩阵和哈达玛矩阵,包括它们的快速算法、构造法、存在性结果及其一般性的推广。第二部分考虑的是低维情形,例如,3-维、4-维和6-维Walsh和哈达玛矩阵与变换。第三部分是全书的核心也是本书的独特之处,研究了N-维2阶哈达玛矩阵,并证明了这类矩阵与的H-布尔函数和2阶二进阵列是等价的,由此,推导出了一系列有关高维2阶哈达玛矩阵的计数结果。本书中还罗列了许多有关高维哈达玛矩阵理论研究和工程应用的公开问题。
本书系统介绍有关数学难题——哥德巴赫猜想的研究成果,特别是我国数学家的重大贡献,同时介绍研究这一问题的一些重要方法。
This book provides an introduction to Lie groups, Lie algebras, and representation theory, aimed at graduate students in mathematics and physics.Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it a useful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus,I neither assume a prior course on differentiable manifolds nor provide a con-densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semisimple groups and Lie algebras by treating the representation theory of SU(2) and SU(3) in detail before going to the general case. This allows the reader to see roots, weights, and the Weyl group "in action" in simple cases before confronting the general theory. The standard books on Lie theory begin immediately with the general case:a
《有限群论基础(第2版)》讲述有限群论的基本知识,以较少的篇幅完整地阐述了有限群论的基本概念及处理有限群的方法,并介绍了有限群表示的基本概念及常用的结论,具体内容包括:基本概念、正规子群、同态定理、置换群、置换表示、交换群,Sylow定理、可解群及有限群表示论初步。 《有限群论基础(第2版)》内容深入浅出,富有启发性,并配备较多的例子和习题,便于讲授和自学。 学习本书,不要求读者学习过抽象代数课程或阅读过相关的书籍,本书可用做高等院校有限群论课程的教材,也可供科技工作者作为自学资料或参考书。
贝叶斯网是将概率、统计应用于复杂系统的不确定性推理和数据分析的一种有效工具,它起源于20世纪80年代中期对人工智能中的不确定性问题的研究,近年来在国际上的影响不断扩大。本书是本系统论述贝叶斯网的基本理论、算法及其应用的中文专著。内容包括概率论及贝叶斯网基本概念、贝叶斯网推理、贝叶斯网学习,以及贝叶斯网在中医中的应用部分。本书从实例出发,由浅入深,直观与严谨相结合,并提供了详尽的参考文献。本书的读者对象是相关专业的高年级本科生、研究生和科研人员。
Rota-Baxter代数由一个结合代数和一个线性算子组成,该算子满足微积分的分部积分公式中的等式。Rota-Baxter代数20世纪60年代起源于理论。本世纪以来,Rota-Baxter代数不仅在理论法方面得到了突飞猛进的发展,并且在数学物理、数论、组合等方面得到了广泛的应用。尽管过去的几十年有很多有关于Rota-Baxter代数的文章,但是还缺乏一本系统介绍Rota-Baxter代数的专著。《Rota-Baxter代数导论(英文版)》就是本介绍该领域的著作,通过大量的例子以及各种应用之间的联系,详细介绍了Rota-Baxter代数,包括它的三个重要方面。本书可作为代数、组合、数论和数学物理领域的研究生或参考书,也可供相关的研究人员参考。作者郭锂为美国Rutgers教授,是Rota-Baxter代数及相关结构近年来进展的主要贡献者之一。郭锂教授在NoticesoftheAmericanMathematicalSociety发表的文章WHATISaRota-BaxterAlgebra将这
基本数论和整数环的算术性质有关,在早期数论的发展过程中,学者已经注意到整数环和有限域上的多项式环之间的很多共同性质,例如,Fermat和Euler定理、Wilson定理、二次(更高)互反性、素数定理以及算术级数中素数上的Dirichlet定理,他们都存在着极大的相似性。本书在介绍完函数域上的基本资料以后,接下来深入剖析全局函数域和代数数域之间的相似性。内容丰富,包括ABC-猜想、素数原根的Artin猜想、Brumer-Stark猜想,Drinfeld模型,类数公式和平均值定理。本书的前几章高年级本科生也可以理解,后面的章节更适合于研究生和数学以及相关的专家学者,增加了许多研究代数数域和代数函数域之间的关系的内容,本书也可以作为深入学习的基础教程。
《纽结理论中的亚历山大多项式与琼斯多项式:从一道北京市高一数学竞赛论题谈起》介绍了纽结理论、亚历山大多项式、琼斯多项式的基本知识、起源和发展等问题。全书共八章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在许多学科中的应用。《纽结理论中的亚历山大多项式与琼斯多项式:从一道北京市高一数学竞赛论题谈起》适合、师生阅读和收藏。