乔治 布尔发明了一套符号用来进行逻辑演算,创造了逻辑代数系统,完成了逻辑的数学化。布尔称他的工作为 思维的定律 ,理由是命题代数和思维过程的原则紧密相联。 新的知识常常会为你解决一些意想不到的难题。布尔代数就可以应用于解决逻辑问题,这些问题的条件形成一个命题的总体,我们可以利用它证实某些其他命题的真和假。布尔代数在代数学、逻辑演算、集合论、拓扑空间理论、测度论、概率论、泛函分析等数学分支中均有应用。 本书介绍了布尔代数、广义布尔代数、布尔方程、布尔矩阵、布尔表示等概念,还列举了布尔代数在逻辑线路、极大极小值等问题中的应用。
本书特色: 经典理论与现代应用相结合。通过丰富的实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。 内容与时俱进。不仅融合了的研究成果和新的理论,而且还补充介绍了相关的人物传记和历史背景知识。 习题安排别出心裁。书中提供两类由易到难、富有挑战的习题:一类是计算题,另一类是上机编程练习。这使得读者能够将数学理论与编程技巧实践联系起来。此外,本书在上一版的基础上对习题进行了大量更新和修订。
本书通过五十三个有趣味的、典型的或具有历史渊源的问题分析、解答,着重介绍了逻辑推理、命题代数、集合计算、初等数论、图论和初等组合数学等几个数学分支,使已具备离散数学初步知识的读者更多地了解这门学科的实质和思维方法,引导读者温游奥秘的数学世界,体会灵感、思维之美,本书是一本趣味性、知识性兼备的读物。 本书可作为初中学生、高中学生、大学低年级学生的课外读物,也可用作中学教师教学时选题参考和辅导数学竞赛的参考读物,具有中学以上文化水平的干部、职工中的数学爱好者,阅读此书将是一种精神享受。
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思维以及应用与建模。全书取材广泛,除包括定义、定理的严密陈述外,还配备大量的实例和图表的说明、各种练习和题目以及丰富的历史资料和网站资源。第6版在前五版的基础上做了大量的改进,使其成为更有效的数学工具。 本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
本书特色: 经典理论与现代应用相结合。通过丰富的实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。 内容与时俱进。不仅融合了的研究成果和新的理论,而且还补充介绍了相关的人物传记和历史背景知识。 习题安排别出心裁。书中提供两类由易到难、富有挑战的习题:一类是计算题,另一类是上机编程练习。这使得读者能够将数学理论与编程技巧实践联系起来。此外,本书在上一版的基础上对习题进行了大量更新和修订。
Since the first monograph titled Enumerative Theory of Maps appeared on the subject considered in 1999, many advances have been made by the author himself and those directed by him under such a theoretical foundation. Because of that book with much attention to maps on surface of genus zero, this monograph is in principle concerned with maps on surfaces of genus not zero. Via main theoretical lines, thiook is divided into four parts except Chapter 1 for preliminaries. Part one contains Chapters 2 through 10. The theory is presented for maps on general surfaces of genus not necessary to be zero. For the theory on a surface of genus zero is comprehensively improved for investigating maps on all surfaces of genera not zero. Part two consists of only Chapter 11. Relationships are established for building up a bridge between super maps and embeddings of a graph via their automorphism groups. Part three consists of Chapters 12 and 13. A general theory for finding genus distribution of graph embeddin
This exposition of Galois theory was originally going to be Chapter I of the continuation of my book Ferrnat's Last Theorem, but it soon outgrew any reasonable bounds for an introductory chapter, and I decided to make it a separate book. However, this decision was prompted by more than just the length. Following the precepts of my sermon "Read the Masters!" [E2], Imade the reading of Galois' original memoir a major part of my study of Galois theory, and I saw that the modern treatments of Galois theory lacked much of the simplicity and clarity of the original. Therefore I wanted to write about the theory in a way that would not only explain it, but explain it in terms close enough to Galois' own to make his memoir accessible to the reader, in the same way that I tried to make Riemann's memoir on the zeta function and Kummer's papers on Fermat's Last Theorem accessible in my earlier books, [Eli and [E3]. Clearly I could not do this within the confines of one expository chapter
《高等代数方法与技巧》通过高等代数的知识点及近年来研究生入学试题进行分析和研究,把高等代数的解题方法归纳为50类,以此帮助读者进一步理解和把握高等代数的思想内涵,掌握并学会高等代数的证题方法和技巧。本书作为临沂大学校本教材,经学校立项并由山东人民出版社正式出版发行。本书既可作为大学数学专业高等代数后继课程的教材、作为数学专业研究生考试的辅导教材,也可作为理工科各专业讲授线性代数教学和学生自学的辅导参考书。
本书的编写按两条主线展开,一部分按中学知识板块来组织教材内容,主要有方程模型、函数模型、不等式模型、数列模型、几何模型、简单的线性规划模型、计数与初等概率模型等;另一部分按数学建模的常见方法编成两章,其中一章是图论模型,另一章包括数据拟合法、近似计算法、优选法、统筹法、聚类分析法、模糊分析法、模糊评判法及层次分析法等数学建模方法。在每一章中,除了列举一些典型的建模案例外,还配备了一些思考与练习题,供读者选用;书后附有这些问题的提示与参考答案。
本书是关于编码理论的一本教材,主要介绍编码理论的基本知识。全书共十二章,可以分为两部分。部分是第二章至第四章,主要介绍编码理论中用到的代数基本知识,特别是有限域的基本知识。第二部分是第五章至第十二章,主要介绍编码理论的基本知识,包括线性码、HamHnng码、Golay码、循环码、BcH码、Reed-Muller码以及线性码的重量分布等。 本书适合高等院校的信息科学、计算机科学以及通信等的本科生作为教材使用,也可供相关领域的科研人员和工程技术人员参考。
本书主要内容分成两部分,部分包括章、第2章、第3章内容,这部分作为《线性代数》的衔接与补充,主要讲了线性空间、内积空间、线性变换。第二部分包括第4章到第9章,这一部分是考虑到当前各工科学科研究生的实际需要而选择的内容,主要包括:范数理论及其应用;矩阵分析及其应用;矩阵分解;广义矩阵及其应用;特征值的估计及广义特征值;矩阵的kronecker积等。
《三角级数论》以现代的观点简明而完整地讲述傅里叶级数的基础理论,全书共分7章。章讲述预备性知识;第2,3章讲傅里叶级数的性质;第4章讲傅里叶级数的收敛性及其判别法;第5章、第6章讲傅里叶级数的求和法及其应用;最后一章讲一般的三角级数。另有一个附录。对全书主要内容的来源作了一个综述。
本书是关于编码理论的一本教材,主要介绍编码理论的基本知识。全书共十二章,可以分为两部分。部分是第二章至第四章,主要介绍编码理论中用到的代数基本知识,特别是有限域的基本知识。第二部分是第五章至第十二章,主要介绍编码理论的基本知识,包括线性码、HamHnng码、Golay码、循环码、BcH码、Reed-Muller码以及线性码的重量分布等。 本书适合高等院校的信息科学、计算机科学以及通信等的本科生作为教材使用,也可供相关领域的科研人员和工程技术人员参考。