乔治 布尔发明了一套符号用来进行逻辑演算,创造了逻辑代数系统,完成了逻辑的数学化。布尔称他的工作为 思维的定律 ,理由是命题代数和思维过程的原则紧密相联。 新的知识常常会为你解决一些意想不到的难题。布尔代数就可以应用于解决逻辑问题,这些问题的条件形成一个命题的总体,我们可以利用它证实某些其他命题的真和假。布尔代数在代数学、逻辑演算、集合论、拓扑空间理论、测度论、概率论、泛函分析等数学分支中均有应用。 本书介绍了布尔代数、广义布尔代数、布尔方程、布尔矩阵、布尔表示等概念,还列举了布尔代数在逻辑线路、极大极小值等问题中的应用。
本教材是高等学校经济类相关专业数学基础课 线性代数 课程的教材。全书共分六章。主要内容包括行列式、矩阵、线性方程组、向量空间、矩阵的特征值与特征向量及二次型。本书按章配置适量习题,书末附有习题答案与提示,供教师和学生参考。教材的阐述兼顾线性代数的科学性和深入浅出。在例题的选配和讲解上,达到题型多样,难度深浅适当。习题的配备上分为基础题型和综合题型,既照顾到基础,又增加了部分习题的难度,给学有余力的学生更多的提升空间。本教材在讲授知识的同时,注重培养学生数学的思维方式和运用数学知识解决经济问题的能力。本教材适合高等学校非数学专业的线性代数课程教材或教学参考书。
本书比较全面、系统地介绍了矩阵的基本理论、方法及其应用。全书分上、下两篇,共10章,分别介绍了线性空间与线性算子,内积空间与等积变换,λ矩陈与若尔当标准形,赋范线性空间与矩阵范数,矩阵的微积分运算及其应用,广义逆矩阵及其应用,矩阵的分解,矩阵的克罗内克积、阿达马积与反积,几类特殊矩阵(如:非负矩阵与正矩阵、循环矩阵与素矩阵、随机矩阵和双随机矩阵、单调矩阵、M矩阵与H矩阵、T矩阵与汉大象尔矩阵等),辛空间与辛矩阵等内容。各章均配有一定数量的习题。附录中还给出了几套模拟自测试题。为了方便读者学习和参考,本书备有一张光盘,其中包含各章习题详解和模拟考试自测试题的解答提示等,供读者选用。 本书可作为理工科大学各专业研究生的学位课程教材,也可作为理工科和师范类院校高年级本科生的选修课教材,
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思维以及应用与建模。全书取材广泛,除包括定义、定理的严密陈述外,还配备大量的实例和图表的说明、各种练习和题目以及丰富的历史资料和网站资源。第6版在前五版的基础上做了大量的改进,使其成为更有效的数学工具。 本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
《矩阵计算(英文版?第4版)》是数值计算领域的名著,系统介绍了矩阵计算的基本理论和方法。内容包括:矩阵乘法、矩阵分析、线性方程组、正交化和二乘法、特征值问题、Lanczos方法、矩阵函数及专题讨论等。书中的许多算法都有现成的软件包实现,每节后附有习题,并有注释和大量参考文献。新版增加约四分之一内容,反映了近年来矩阵计算领域的飞速发展。 《矩阵计算(英文版?第4版)》可作为高等院校数学系高年级本科生和研究生教材,亦可作为计算数学和工程技术人员参考书。
本书介绍数系(自然数-整数-有理数-实数-复数-四元数-超穷数)的基本理论及数系在现实生活中的应用,探讨数系与人文(包括中国传统文化)的联系,追问数系诞生的历史源头,包括数字解读字的意义,认识数的前楼梯、自然数与整数、有理数与无理数、复数与四元数、无穷与超穷数等内容。 本书适合大学在读本科生、数学教育硕士研究生、中学数学教师、高校相关专业的数学教师阅读参考。
本书包含了组合数学的基本内容与方法:抽屉原则、排列组合、容斥原理、生成函数、匹配、组合设计。本书写作力求简练。若干难度不大,且有利于读者掌握知识方法的证明写得很简略,希望读者能通过的独立思考掌握组合数学的内涵。
本套书是以理工类、经管类大学本科数学教学大纲和全国研究生入学考试数学考试大纲的要求为基准编写的教学辅导书,作者是清华大学数学科学系主讲教授。? 本书讲述“线性代数”课程的基本概念、基本定理与知识点,从基本概念、基本定理的背景及其应用入手,延伸到解题的思路、方法和技巧,并通过一法多题、一题多解的方式兼顾知识的综合与交叉应用,在内容的安排上,既体现出各知识点间承上启下的关系,保持学科结构的系统性,又照顾到各知识点间的横向联系,为读者从全局上、总体上掌握所学的知识提供平台。为巩固所学的基本概念和基本定理,安排了基本题、综合题(侧重本章知识点的综合)和交叉综合题(侧重各章知识点间的综合)供读者选用,并附有读者自测题,供读者选用。? 考虑到教学大纲和考试大纲中对理工类学生或考生的要求
本书是作者周炜多年教学和研究成果的结晶,系统地研究了组合计数、组合设计以及相关数学理论。全书分为10章:集合与函数,排列组合与多项式定理,整除性理论,数论函数,不定方程,同余式,线性递归方程与母函数,鸽巢原理和Ramsey(拉姆齐)定理,Burnside(伯恩赛德)引理和Polya(波利亚)定理,相异代表组和区组设计。 本书可以作为计算机科学与技术、数学、密码学和其他相关专业研究生和本科生的教材使用,也可作为广大师生和工程技术人员的自学用书或参考书。
本书通过大量简单易懂的示例和练习介绍了有关离散数学的基本概念与基础知识,并把理论知识与一系列实际应用联系起来。主要内容包括:命题逻辑和谓词逻辑、类型集合论、布尔代数、关系、函数、序列、归纳法、图论、组合数学等。通过适当的教学方法,可以加深学生对离散数学的理解。 本书适合所有学习离散数学的学生,并可作为相关专业的教材。
《高等代数探究性课题精编》包括43个高等代数探究性课题,这些课题背景丰富(素材取自于外有关资料),结论深刻有趣,题材涉及高等代数的方方面面,对各课题不过分强调技巧难度,都可以从不同层次进行探究。对每个课题都先简要阐明其背景、目的和意义,然后提出本课题的“中心问题”,让读者围绕某个中心问题自主探究。书中采用问题链的形式,给读者以启发、引导,帮助他们明晰探究思路。每个问题都附有详尽的解答,各课题中还设置探究题,以丰富探究性的层次。通过对课题的探究,可以让读者尝试数学研究的过程,获得数学创造的体验,提高不断深造的能力和创造能力,并拓宽知识视野,加深对数学本质的理解。
本书叙述了线性代数的基本概念、基本方法和基本定理。主要内容有行列式、矩阵、向量组的线性相关性,n维向量空间。线性方程组,特征值与特征向量,内积与二次型。全书共六章,约27万字。每章又分内容提要,疑难解析,例题分析,综合范例,自测题、答案与提示等。内容通俗易懂循序渐进。 本书适用于理工科和考研者复习线性代数之用。
Thisbookprovidesthenecessaryfoundationforstudentsinterestedinanyofthediverseareasofmathematicswhichrequirethenotionofadifferentiablemanifold.Itisdesignedasabeginninggraduate-leveltextbookandpresumesagoodundergraduatetraininginalgebraandanalysisplussomeknowledgeofpointsettopology,coveringspaces,andthefundamentalgroup.Itisalsointendedforuseasareferencebooksinceitincludesanumberofitemswhicharedifficulttoferretoutoftheliterature,inparticular,thepleteandself-containedproofsofthefundamentaltheoremsofHodgeanddeRham.