这是一套完整介绍数学分析的教材,内容涉及从实数到流形上的微分形式,其中包括渐近方法、傅立叶分析、拉普拉斯变换、勒让德变换、椭圆函数以及频率分布。本书语言通俗,表达清晰,各章有大量的练习、思考题以及应用实例。
比较系统地对无穷级数在数学中所起的技术工具作用与连分数解析理论构造闵可夫斯基(Minkowski)函数及将其开拓到复数域上作了介绍。特别较为无穷发散级数的几种和性结合实际地作了论述和论证。当然这是《无穷级数与连分数》在数学思想方面的体现。 《无穷级数与连分数》章主要介绍无穷收敛级数在经典与近代数学中的技术工具作用,第二章主要介绍无穷发散级数作为某些函数的渐进级数作相应的数值计算与求微分方程的数值解。同时不同程度地阐明了对无穷发散级数的几种可和性方法。第三章论述连分数与无穷级数的关系及连分数的解析理论。第四章应用其连分数的解析理论,特别是Denjoy引理构造了闵可夫斯基函数,而这个函数具有明显的特征,顺便将其解析开拓到复平面的某个区域内,给出最普遍的表示形式。
本书主要介绍和讨论了赋范、赋准范和赋拟范空间及其上的线性算子的基本概念、所谓“线性泛函的原理”即:Hahn-Banach定理、开映象与闭图像定理以及共鸣定理(一致有界原理),Hilbert空间的基本内容,的可分空间(改范)等价于C[a,b]以及严格凸空间,(作为上述空间推广的)拓扑向量空间的基本而有用的一些概念和特性。本书的创新之处在于把赋范空间、赋准范空间和赋拟范空间结合起来进行深入讨论(特别是创造了许多有趣的反例说明它们的差异点)。 本书适合高校数学专业师生及相关专业科研人员阅读参考。
本书从实用和简明的角度介绍了数值分析的基本概念和方法,并对误差估计、方法的收敛性和稳定性以及优缺点等作了适当分析.全书共分8章,内容包括:绪论,插值法,曲线拟合与函数逼近,线性方程组的数值解法,数值积分与数值微分,非线性方程与方程组的数值解法,常微分方程初值问题的数值解法,矩阵特征值问题的数值方法.附录中给出了MATLAB简介.书中配有典型例题、习题和实验题,书后给出了部分习题答案.本书可作为理工科各专业研究生和高年级本科生的教材或教学参考书,也可供从事科学与工程计算的科技工作者参考.
美国萨奥尔编著的《数值分析》是一本的数值分析教材,书中不仅全面论述了数值分析的基本方法,还深入浅出地介绍了计算机和工程领域使用的一些高级数值方法,如压缩、前向和后向误差分析、求解方程组的迭代方法等。每章的“实例检验”部分结合数值分析在各领域的具体应用实例,进一步探究如何更好地应用数值分析方法解决实际问题。此外,书中含有一些算法的matlab实现代码,并且每章都配有大量难度适宜的习题和计算机问题,便于读者学习、巩固和提高。
微型生物是淡水中普遍存在的一类生物,在整个水生态中占有非常重要的地位。很多微型生物能够指示水质状况和水体的营养程度,可以作为污水处理运行状况的指示生物,用于评价污水的处理效果。本书收入了包括细菌、放线菌、真菌、蓝细菌、藻类、原生动物门、轮虫、节肢动物(枝角类、桡足类)八大类1800余种微型生物和120余种底栖动物的简介和图片。 本书可以作为教学参考书供相关的师生使用,也可供环境监测人员、给水排水处理厂和污水处理厂的运转管理人员、食品检验人员以及从事环境保护工作的相关科技人员参考。
《泛函分析》(原书第2版)是泛函数分析的经典,作为Rudin的分析学经典著作之一,《泛函分析》(原书第2版)秉承了内容精练、结构清晰的特点。第2版新增的内容有Kakutani不动点定理,Lamonosov不变子空间定理以及遍历定理等,另外,还适当增加了一些例子和习题。
《MATLAB数值分析(第2版)》以MATLABR2011a为平台编写,介绍了数值分析与应用。全书共11章,~3章讲解了MATLAB基础知识,第4~10章分别讲解了矩阵分析、求解线性方程(组)、求解非线性方程(组)、插值拟合与变换、MATLAB的微积分、求解微分方程和MATLAB的化技术。1章总结性地介绍了数值分析在各个领域中的应用,让读者进一步领略到MATLAB的强大功能。 本书可作为理工科各专业的本科生、研究生以及其他专业科技人员学习MATLAB数值分析、建模、仿真方面的教材或参考书。
《非线性物理科学:离散和切换动力系统(英文版)》用一种清晰简明、独特的观点讨论非线性离散动力系统稳定性和分叉理论,并分析了离散动力系统中稳定性及其切换的复杂性。本书首先介绍了含多重特征根的线性离散系统的解析解和稳定性理论,给出了详细的离散非线性动力系统的稳定性和奇异性分类;然后通过众多例子展示离散动力系统中的混沌及其分形性,并应用正映射和负映射讨论了非线性离散动力系统完整动力学,包括其不动点和混沌的阴阳解。本书还系统地讨论了具有搬运跳跃律的切换系统稳定性,将其作为描述连续和离散混合系统最一般的形式;并介绍了一种广义的符号动力学——映射动力学,通过此动力学讨论在边界不连续动力系统的擦边分叉以及奇异吸引子碎裂机理,以帮助读者更好地理解离散、切换不连续和边界不连续动力系统中的规则
本书是作者Pugh在伯克利大学讲授数学分析课程30多年之久的基础上编写而成,书中语言表述生动活泼、通俗易懂,引用了很多有价值的例子以及来自Dieudonne,Littlewood和Osserman等几位数学家的评论,还精心挑选了500多个精彩的练习题。本书内容包括实数、拓扑知识初步、实变函数、函数空间、多元微积分、Lebesgue积分理论等,其中多元微积分的讲法较为接近当前数学界常用的语言,将会对我国数学分析的教学产生积极的影响。
本书深入揭示了小样本多元数据的实质和特点,对多元回归法和现代多种建模方法进行了剖析、比较、验证和拓展,提出了小样本多元数据分析的理论和方法,构建了从不同侧面克服小样本多元数据建模困难的完整的建模方法体系。 全书共8章,包括:绪论,多元线性回归分析,偏二乘回归分析,方差分量线性模型,自变量筛选和综合特征参数模型,贝叶斯统计分析方法,统计学习理论与支持矢量机,其他分析方法的探讨。 本书可供高等院校飞行器设计、系统工程、管理科学与工程、数量经济学和有关专业的本科生及研究生阅读,也可供研究人员、工程技术人员及有关人员参考。
《测度论(第1卷)(影印版)》是作者在莫斯科国立大学数学力学系的讲稿基础上编写而成的。卷包括了通常测度论教材中的内容:测度的构造与延拓,Lebesgue积分的定义及基本性质,Jordan分解,Radon-Nikodym定理,Fourier变换,卷积,L空间,测度空间,Newton-Leibniz公式,极大函数,Henstock-Kurzweil积分等每章最后都附有非常丰富的补充与习题,其中包含许多有用的知识,例如:Whitney分解,Lebesgue-Stieltjes积分,Hausdorff度,Brunn-Minkowski不等式,Hellinger积分与Hellinger距离,BMO类,Calderon-Zygmund分解等。书的最后有详尽的参考文献及历史注记。这是一本很好的研究生教材和教学参考书。