这是一套完整介绍数学分析的教材,内容涉及从实数到流形上的微分形式,其中包括渐近方法、傅立叶分析、拉普拉斯变换、勒让德变换、椭圆函数以及频率分布。本书语言通俗,表达清晰,各章有大量的练习、思考题以及应用实例。
比较系统地对无穷级数在数学中所起的技术工具作用与连分数解析理论构造闵可夫斯基(Minkowski)函数及将其开拓到复数域上作了介绍。特别较为无穷发散级数的几种和性结合实际地作了论述和论证。当然这是《无穷级数与连分数》在数学思想方面的体现。 《无穷级数与连分数》章主要介绍无穷收敛级数在经典与近代数学中的技术工具作用,第二章主要介绍无穷发散级数作为某些函数的渐进级数作相应的数值计算与求微分方程的数值解。同时不同程度地阐明了对无穷发散级数的几种可和性方法。第三章论述连分数与无穷级数的关系及连分数的解析理论。第四章应用其连分数的解析理论,特别是Denjoy引理构造了闵可夫斯基函数,而这个函数具有明显的特征,顺便将其解析开拓到复平面的某个区域内,给出最普遍的表示形式。
本书是关于小波分析的一本比较全面的著作。书中分为三个部分:小波基础、小波进展和小波应用。部分包括章—第5章,内容包括:小波分析初步,空间的基底与框架,Gabor变换、连续小波变换及小波奇异性分析,小波级数、多分辨分析、小波的分解算法与重构算法及小波包分解,尺度函数与小波的构造。第二部分包括第6章~1章,内容包括:小波框架,多小波和多带小波、平衡多小波以及平衡化处理,提升格式和双正交小波,多元小波与脊波,抽样理论,向量值小波。第三部分包括2 章—6章,内容包括:信号的时频分析与音乐和音频信号分析,图像压缩,小波去噪,边缘检测,小波在医疗中的应用。 本书内容丰富、重点突出,既有小波的基础理论,又有算法的详细推导,并且对小波最近进展的重要方面进行了总结,对许多应用也进行了比较详细的叙述。它可以
本书是普通高等教育“十一五”规划教材,是针对我国各重点院校对教学的要求及教学实际予以修订而成的,上册内容为一元函数微积分和微分方程,下册内容为空间解析几何、多元函数微积及无穷级数,每节末附有习题答案与提示。 本书与一般工科《高等数学》教材相比,适当地补充了实数基本定理、一致连续性、一致收敛和含参量积分等内容,加强了微积分的理论基础;注重无穷小分析等数学思想的讲解和应用;在数学逻辑性、严谨性及抽象性方面也有相诮要求和训练;引进现代数学语言、术语和符号,为读者进一步学习现代数学理论和方法提供了帮助;同时注重学生的工程应用意识的训练,培养学生应用数学解决实际问题的能力。 本书结构严谨、条理清晰、通俗易懂、例题典范、习题分层、可读性强,便于使用。适用于理工科(非数学)中对数学要求
微型生物是淡水中普遍存在的一类生物,在整个水生态中占有非常重要的地位。很多微型生物能够指示水质状况和水体的营养程度,可以作为污水处理运行状况的指示生物,用于评价污水的处理效果。本书收入了包括细菌、放线菌、真菌、蓝细菌、藻类、原生动物门、轮虫、节肢动物(枝角类、桡足类)八大类1800余种微型生物和120余种底栖动物的简介和图片。 本书可以作为教学参考书供相关的师生使用,也可供环境监测人员、给水排水处理厂和污水处理厂的运转管理人员、食品检验人员以及从事环境保护工作的相关科技人员参考。
本书是俄罗斯莫斯科大学数学力学系现行的数学分析课程的教材。反映了作者较新的数学教学思想与方法。通过本书可了解近年来俄罗斯大学数学系的数学分析课的教学与改革的·隋况。全书共分四个部分21章。部分(-6章)为单变量函数的微分学,第二部分(第7-14章)为黎曼积分、多变量函数的微分学,第三部分(5-18章)为函数级数与参变积分,第四部分(9-21章)为多重黎曼积分、曲面积分。书末附有用于讨论班和考试的示范性问题和习题。 本书可供数学类专业的本科生、研究生、教师和研究人员参考使用。
本书是与刘玉琏等编写的《数学分析讲义》(下册,第四版,高等教育出版社2003年出版)配套的学习辅导书。此次修汀埘原书版的编写框架没有改变,每个大节还是按照讲义体例,逐节对应编写。每节包括基本内容、学习要求、答疑辅导、补充例题和练习题解法提要五部分,每章末附有自我检测题,书末给出其解答。《数学分析讲义学习辅导书(第2版)(下册)》可作数学专业学生、中学教师、自学读者、函授学员学习数学分析的辅导书,也可作为数学分析习题课教学参考书和考研的参考书。
彝族是我国西部主要少数民族之一,主要分布在四川、云南、贵州三省,古有昆明、乌蛮等名称,至少有2000多年父系氏族社会史。唐代前期,在以彝族先民—乌蛮为主的古代彝语支民族地区建立了近200个民族自治政区—羁縻府州,彝族社会文化有所发展。弄清古代彝族地区羁縻府州的具体分布,方可进一步弄清其生态环境、部落人口、交通状况、文化遗存等情况,为当今彝族地区旅游规划、经济建设、生态环境保护提供历史地理依据。目前,谭其骧主编的《中国历史地图集》、方国瑜的《中国西南历史地理考释》、刘统的《唐代羁縻府州研究》等,均只有几十个羁縻府州考出了大致位置,其中有些还有错误。《彜族地区历史地理研究:以唐代乌蛮等族羁縻州为中心》根据历史记载,结合考古、地名等多学科研究手段,对以乌蛮为主体的古代彝语支民族170多个羁縻府
《矩阵分析与应用(第2版)(精装)》系统、全面地介绍矩阵分析的主要理论、具有代表性的方法及一些典型应用。全书共10章,内容包括矩阵代数基础、特殊矩阵、矩阵微分、梯度分析与化、奇异值分析、矩阵方程求解、特征分析、子空间分析与跟踪、投影分析、张量分析。前3章为全书的基础,组成矩阵代数;后7章介绍矩阵分析的主体内容及典型应用。为了方便读者对数学理论的理解以及培养应用矩阵分析进行创新应用的能力,本书始终贯穿一条主线物理问题“数学化”,数学结果“物理化”。与第1版相比,本书的篇幅有明显的删改和压缩,大量补充了近几年发展迅速的矩阵分析新理论、新方法及新应用。 《矩阵分析与应用(第2版)(精装)》为北京市高等教育精品教材重点立项项目,适合于需要矩阵知识比较多的理科和工科尤其是信息科学与技术(电子、通信、自
美国萨奥尔编著的《数值分析》是一本的数值分析教材,书中不仅全面论述了数值分析的基本方法,还深入浅出地介绍了计算机和工程领域使用的一些高级数值方法,如压缩、前向和后向误差分析、求解方程组的迭代方法等。每章的“实例检验”部分结合数值分析在各领域的具体应用实例,进一步探究如何更好地应用数值分析方法解决实际问题。此外,书中含有一些算法的matlab实现代码,并且每章都配有大量难度适宜的习题和计算机问题,便于读者学习、巩固和提高。
本书是俄罗斯莫斯科大学数学力学系现行的数学分析课程的教材。反映了作者较新的数学教学思想与方法。通过本书可了解近年来俄罗斯大学数学系的数学分析课的教学与改革的·隋况。全书共分四个部分21章。部分(-6章)为单变量函数的微分学,第二部分(第7-14章)为黎曼积分、多变量函数的微分学,第三部分(5-18章)为函数级数与参变积分,第四部分(9-21章)为多重黎曼积分、曲面积分。书末附有用于讨论班和考试的示范性问题和习题。 本书可供数学类专业的本科生、研究生、教师和研究人员参考使用。
《测度论(第1卷)(影印版)》是作者在莫斯科国立大学数学力学系的讲稿基础上编写而成的。卷包括了通常测度论教材中的内容:测度的构造与延拓,Lebesgue积分的定义及基本性质,Jordan分解,Radon-Nikodym定理,Fourier变换,卷积,L空间,测度空间,Newton-Leibniz公式,极大函数,Henstock-Kurzweil积分等每章最后都附有非常丰富的补充与习题,其中包含许多有用的知识,例如:Whitney分解,Lebesgue-Stieltjes积分,Hausdorff度,Brunn-Minkowski不等式,Hellinger积分与Hellinger距离,BMO类,Calderon-Zygmund分解等。书的最后有详尽的参考文献及历史注记。这是一本很好的研究生教材和教学参考书。
“数值分析”也叫“计算方法”,主要研究使用计算机解决数学问题的数值计算方法和理论。本书主要内容包括非线性方程(组)求根、解线性方程组的直接法和迭代法、曲线拟合和函数插值、数值微积分、常微分方程的数值解法、矩阵的特征值问题等。考虑到工科院校该课程教学的目的是满足工程和科研应用需要,因此本书更注重介绍工程应用的方法,弱化数学理论的推导证明,并且各章大多配有应用案例、上机实验和习题。本书提供配套电子课件,登录华信教育资源网注册后可以免费下载。本书适合作为普通工科院校少学时本科生和研究生教材或教辅使用。
偏微分方程是数学学科的一个重要分支,它与其他数学分支均有广泛的联系,而且在自然科学与工程技术中有广泛的应用.本书主要讲述偏微分方程的一般理论,广义函数与sob01ev空间,椭圆边值问题,能量方法,算子半群等内容,为提高读者的整体数学素质提供了必要的材料,也为部分读者进一步学习与研究偏微分方程理论做了准备。 本书可作为高等院校数学系(数学、应用数学、计算机数学等专业)与有关理工科的研究生教材,也可作为数学、工程等领域的青年教师或科研人员的参考书。