本书全面、系统地介绍了矩阵论的基本理论、运算方法及其应用。全书分八章,前四章突出基础理论,重点介绍线性空间与线性变换,欧氏空间与酉空间,Jordan标准形,向量与矩阵的范数理论。后四章侧重应用,学习矩阵的分析运算,特征值的估计,广义逆矩阵在解线性方程组中的应用,矩阵直积在解矩阵方程及矩阵微分方程中的应用。每章配有相应的习题,书末给出答案与提示。附录中给出哈工大研究生矩阵分析2007 2012年考试试题及参考答案。本书力求行文流畅,例题详实,推论严谨,深入浅出,旨在提高工科研究生的数学修养和自学能力。
本书共分七章:绪论,初等积分法,线性方程组与方程,常系数线性微分方程与方程组,一般理论,稳定性初步,一阶偏微分方程。为了巩固所学知识,每章均配有一定量的习题,书后附有部分习题答案与提示。 本书可作为高等院校数学系本科学生的教材,也可供工科学生及工程技术人员参考。
本书主要应用Karamata正规变化理论,上、下解方法和局部化方法,系统研究半线性椭圆方程(组)边界爆破解的存在性、渐近行为和唯一性。一方面,无论非线性项在无穷远处是正规变化还是快速变化时,建立了椭圆方程(组)边界爆破解的渐近行为的统一处理模式,特别是这里给出的渐近行为是显式公式,而不是通过某个积分方程或者常微分方程的解来刻画。另一方面,重点考虑了椭圆方程组边界爆破解的渐近行为和唯一性,特别是在没有解的精确渐近行为时,应用的迭代技巧,证明了方程组边界爆破解的唯一性。
本书研究如何将线性科学中适用的强有力的基本方法发展推广到非线性科学。书中全面系统论述作者及其课题组近几年建立的新研究方法,如多线性分离变量法、泛函分离变量法和导数相关泛函分离变量法、形变映射法、方程推导的非平均法等。本书还系统介绍了在非线性数学物理严格解研究方面的一些其他重要方法及其*发展,如有限和无限区域的反散射方法、形式分离变量法、奇性分析法、对称性约化方法、达布变换方法和广田直接法等等。书中利用这些方法,对非线性系统中的各种局域激发模式及其相互作用作了详尽的描述。 本书可作为高等院校物理系和数学系等理工科高年级本科生选修课教材和研究生专业基础课教材,也可供物理、数学、力学、计算机、大气和海洋科学等非线性科学领域的研究人员参考。