本书是Folland教授的名著《实分析》的第二版。与*版相比,在一些内容的编排上作了适当调整,同时引入了一些新的内容,去掉了已经过时的内容,更有利于学生学习与思考。作为一部优秀的教材,内容不仅涵盖了分析学的基本内容和技巧,还介绍了一些从事其他领域的研究工作所必需的基础知识。此外,教材中的大量习题,能够进一步拓展思维,从而易于更加深入地了解这些内容背后的真实想法。本书适用于理工类专业及相关专业的研究生。
本书是随机分析方面的名著之一。以主题广泛丰富,论述简洁易懂而又不失严密著称。书中阐述了各领域的典型应用,包括数理金融、生物学、工程学中的模型。还提供了很多示例和习题,并附有解答。读者对象:数学分析及金融数学专业的高年级本科生,研究生和研究人员。
本书从该理论的最初起源 积分函数的最小化开始,对该理论做了较深的讨论。变分观点的发展很大程度上和优化、平衡、控制这些理论是紧密相关的。书中在一个统一的框架之中,全面讲述了经典分析和凸分析之外的变分几何和次微积分知识。也讲述了集收敛、集值映射和epi收敛、对偶和正则被积函数。目次:最大和最小;凸性;柱体;集合凸性;集值映射;变分几何;上境图极限;次梯度和次导数;Lipschitzian性质;次微积分;对偶化;单调映射;二阶理论;可测性。读者对象:数学专业的研究生、老师和相关的科研人员。In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis refiects this breadth. For a lon
本书是一部数学经典教材,初版于1965年,以作者在东京大学任教十余年所用的讲义为基础写成的。经过几次修订和增补,1980年出了第5版,本版(第6版)实际上是第5版的重印版。全书论述了泛函空间的线性算子理论及其在现代分析和经典分析各领域中的许多应用。目次:预备知识;半范数;Baire-Hausdorff定理的应用;正交射影和riesz表示定理;Hahn-Banach定理;强收敛和弱收敛;傅里叶变换和微分方程;对偶算子;预解和谱;半群的解析理论;紧致算子;赋范环和谱表示;线性空间中的其他表示定理;遍历性理论和扩散理论;发展方程的积分。 读者对象:数学专业的研究生和科研人员。
本书汇集了泛函分析教学过程中学生提出的大量问题 , 收集了很多主要概念和定理的反例, 主要是关于度量空间、赋范空间、 Hilbert空间和算子等问题和反例.
本书汇集了“数学分析”方面的问题和反例500多个。全书共八章,内容有数列、函数微分、积分、级数、一致收敛、多元函数、重积分与参变量积分。每一章分为三部分:第一部分提纲挈领地给出了该章的基本概念和主要结
维拉尼所著《*输运(第1分册)(英文版)》是全面讲述*输运——无论新老问题的专著。本书讲学严谨,基于大量的文献扩充改变而成,使得这本书成为一本相当有价值的宝典类书籍,证明完整自成体系,扩充了文献注解。适于*输运方面的每个科研人员和研究生,博士及以上的人员不需要预备知识可以完全读懂该书。
本书在一般测度论观点下的概率论和随机过程初步知识的基础上,介绍了随机分析学的基础及较新成果,全书分五章:章是预备知识,包括随机过程一般理论和鞅论初步;第二章是近代随机积分理论;第三章讨论连续半鞅的随机微分、伊藤公式及其应用;第四章介绍随机微分方程的现代理论;第五章是Malliavin随机分析。
本书是分析领域内的一部经典著作。主要内容包括:抽象积分、正博雷尔测度、LP-空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、*大模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、HP-空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式一致逼近等。另外,书中还附有大量设计巧妙的习题。本书体例优美,实用性很强,列举的实例简明精彩,基本上对所有给出的命题都进行了论证,适合作为高等院校数学专业高年级本科生和研究生的教材。