本书是大学生学习"数学分析"课的辅导教材,分为上、下两册,共七章.上册三章,内容包括:极限与连续,一元函数微分学,一元函数积分学;下册四章,内容包括:级数,多元函数微分学,多元函数积分学,典型综合题分析.在每一节中,设有内容提要、典型例题分析.通过精选的典型例题进行分析、讲解与评注,析疑解惑. 本书许多题的解法是吸取学生试卷中的想法演变而得的,特别是毕业于北京大学数学系的、国内外知名的当今青年数学家们在学生阶段的习题课上和各种测验中表现出来的睿智给本书增添了不可多得的精彩.本书的另外一大持色是:辅导怎样"答"题的同时,还 通过"敲条件,举反例"等方式引导学生如何"问"问题,就是如何给自己"提问题". 本书可作为综合大学、理工科大学、高等师范学校各专业大学生学习数学分桥的学习辅导书.对新担任数学分析
本书介绍了数学分析的基本概念、基本理论和方法,包括一元(多元)函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等。全书分三册,本册内容包括多元函数及其微分学、多元函数微分法的应用、含参变量积分、重积分、曲线积分和曲面积分及各种积分之间的关系。书中列举了大量例题来说明数学分析的定义、定理及方法,并提供了丰富的思考题和习题,便于教师教学与学生自学。每章末都有小结,对该章的主要内容作了归纳和总结,并配有复习题,方便学生系统复习。书中还配有一些概念、定理和方法的视频讲解,内容呈现方式更加生动直观。
《俄罗斯数学精品译丛:数学分析》供初学数学分析用,它包括中学所讲授的数学分析各章节的全部内容,书中讲述多项式的导数、三角函数的导数、指数函数和对数函数的导数,积分定义为微分的逆运算、图形的面积及有穷和的极限,书后附有各章的练习,《俄罗斯数学精品译丛:数学分析》并不着意于讲述的严格性,而是注意给学生以计算技巧的训练。 《俄罗斯数学精品译丛:数学分析》的对象是中学教师和高年级学生、师范院校数学专业的学生,以及初学数学分析的读者。
《数学分析习题课讲义1》主要针对华东师范大学编写的《数学分析》教材第四版而编写的学习指导书,主要使用于初学者学习分析时学习指导,考研同学的复习,年轻教师教学参考。 本书作者结合十余年讲授数学分析、考研辅导和全国数学竞赛的经验,主要对书中内容的知识点简明归纳、课后习题进行了系统归类,对相当一部分题目给出了多种解法或备注、增加适量的有利于学生理解内容掌握方法的题目。对同类书中的部分题解法单一、解法不自然、解法不严格甚至有错误题目进行了详细打磨。
本书是大学生学习"数学分析"课的辅导教材,分为上、下两册,共七章.上册三章,内容包括:极限与连续,一元函数微分学,一元函数积分学;下册四章,内容包括:级数,多元函数微分学,多元函数积分学,典型综合题分析.在每一节中,设有内容提要、典型例题分析.通过精选的典型例题进行分析、讲解与评注,析疑解惑. 本书许多题的解法是吸取学生试卷中的想法演变而得的,特别是毕业于北京大学数学系的、国内外知名的当今青年数学家们在学生阶段的习题课上和各种测验中表现出来的睿智给本书增添了不可多得的精彩.本书的另外一大持色是:辅导怎样"答"题的同时,还 通过"敲条件,举反例"等方式引导学生如何"问"问题,就是如何给自己"提问题". 本书可作为综合大学、理工科大学、高等师范院校各专业大学生学习数学分桥的学习辅导书.对新担任数学分析
吉米多维奇的《数学分析习题集》是一本国际知 名的著作。该书 内容丰富,由浅入深,涉及的内容涵盖了《数学分析 》的全部命题。同 时,该书难题多,许多题目的难度已经超出对同学们 的要求,以至于许 多同学望而却步。为了帮助广大同学更好地掌握《数 学分析》的基本 概念,综合运用各种解题技巧和方法,提高分析问题 和解决问题的能 力,由毛磊、滕兴虎、寇冰煜、张燕、李静等编著的 《吉米多维奇数学分析习题全解(3)》以俄文第13版 为基础,对习题集中的5000道习题逐一进行 了解答。
《数学分析(一)(第二版)》介绍了数学分析的基本概念、基本理论和方法,包括一元函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等。《数学分析(一)(第二版)》共分三册。本册内容包括实数与数列极限、函数与函数极限、函数的连续性、微分与导数、导数的应用、实数集的稠密性与完备性。《数学分析(一)(第二版)》列举了大量例题来说明相关定义、定理及方法,并提供了丰富的思考题和习题,便于教师教学与学生自学。每章末都有小结,并配有复习题,对该章的主要内容进行归纳和总结,方便学生系统复习。通过二维码技术《数学分析(一)(第二版)》配有一些概念定理和方法的视频讲解,内容呈现方式更加生动直观。
《数学分析习题集》是一本国际知名的著作。该书内容丰富,由浅入深,涉及的内容涵盖了《数学分析》的全部命题。同时,该书难题多,许多题目的难度已经超出对同学们的要求,以至于许多同学望而却步。为了帮助广大同学更好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,这本《吉米多维奇数学分析习题全解(2)》以俄文第13版为基础,对习题集中的5000道习题逐一进行了解答。 本书由毛磊、滕兴虎、寇冰煜、张燕、李静等可作为数学专业同学学习《数学分析》的参考书,又可以作为其他理工科同学学习《高等数学》、《微积分》的参考书,同时也可以作为各专业同学考研复习时的参考书。
《数学分析习题课讲义3》是与华东师范大学数学系编写的教材《数学分析(第四版)》配套的学习辅导书,内容安排上与教材相一致,是在作者近二十年讲授“数学分析”课程和参与考研辅导以及全国大学生数学竞赛辅导所积累的大量教学资料的基础上多次修订而成的. 本书共分三册,按节进行编写,每节先梳理知识结构,再按照题目的类型和难度对教材中的习题进行重新编排并给予详细解答. 很多题目提供了多种解法并加以分析和备注,有利于学生理解数学知识蕴涵的数学思想,建构知识的内在联系. 本书还选取了一些教材之外的有代表性的习题,以拓宽知识面,也有利于夯实学习后续专业课的基础. 本书可供高等院校数学各专业学生学习“数学分析”课程使用,也可作为考研学生的复习资料,还可作为“数学分析”课程教师的参考书.
《数学分析(第二版)》介绍了数学分析的基本概念、基本理论和方法, 包括一元(多元)函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等. 《数学分析(第二版)》共分三册. 本册内容包括不定积分、定积分、定积分应用和反常积分、数项级数、函数项级数、幂级数与 Fourier级数. 《数学分析(第二版)》列举了大量例题来说明数学分析的定义、定理及方法, 并提供了丰富的思考题和习题, 便于教师教学与学生自学. 每章都有小结, 对该章的主要内容作了归纳和总结, 章末配有复习题, 方便学生系统复习. 《数学分析(第二版)》还配有 23个关于主要概念和重要定理讲解的小视频, 内容呈现得更加生动直观.
本教材在保留了部分传统的数学分析内容外,新增加了测度论、勒贝格积分、微分流形和流形上的积分等国外教材上常见的内容,这在国内教材上是不多见。本书的出版对高校数学分析课程改革和与国外数学分析教材接轨将起到示范和推动作用。上册内容为:集合与映射,实数与复数,极限,连续函数类,一元函数微分学,一元函数的黎曼积分。
My primary goal in writing Understanding Analysis was to create an elementary one-semester book that exposes students to the rich rewards inherent in taking a mathematically rigorous approach to the study of functions of a real variable. The aim of a course in real analysis should be to challenge and improve mathematical intuition rather than to verify it. There is a tendency, however, to center an introductory course too closely around the familiar theorems of the standard calculus sequence. Producing a rigorous argument that polynomials are continuous is good evidence for a well-chosen definition of continuity, but it is not the reason the subject was created and certainly not the reason it should be required study. By shifting the focus to topics where an untrained intuition is severely disadvantaged (e.g., rearrangements of infinite series, nowhere-differentiable continuous functions, Fourier series), my intent is to restore an intellectual liveliness to this course by offering the beginning student acce
本书是一本非常优秀的图论入门书,自从1972年出版版以来,深受广大读者的欢迎,不断再版,1996年已经出版了第四版。本书用浅显易懂的语言,大量的实例和练习介绍了图论的基本知识以及横贯和拟阵等一些比较艰深的组合数学知识,读来通俗易懂,引人入胜。书中包含了大量的图论应用实例,不管是对于数学专业的师生还是对于工程专业的科技工作者都有很大的吸引力。目次:引言;概念和离子;路和圈;树;平面性;图的着色;有向图;匹配,婚姻定理和Menger定理;拟阵。
The idea for this book came when I was an assistant at the Department of Mathematics and Computer Science at the Philipps-University Marburg, Germany. Several times I faced the task of supporting lectures and seminars on complex analysis of several variables and found out that there are very few books on the subject,compared to the vast amount of literature on function theory of one variable, let alone on real variables or basic algebra. Even fewer books, to my understanding,were written primarily with the student in mind. So it was quite hard to find supporting examples and exercises that helped the student to become familiar with the fascinating theory of several complex variables.
《数学分析习题课讲义2》主要针对华东师范大学编写的《数学分析》教材第四版而编写的学习指导书,主要使用于初学者学习分析时学习指导,考研同学的复习,年轻教师教学参考。 本书作者结合十余年讲授数学分析、考研辅导和全国数学竞赛的经验,主要对书中内容的知识点简明归纳、课后习题进行了系统归类,对相当一部分题目给出了多种解法或备注、增加适量的有利于学生理解内容掌握方法的题目。对同类书中的部分题解法单一、解法不自然、解法不严格甚至有错误题目进行了详细打磨。
《数学分析讲义(第3册)/北京高等教育精品教材》是作者在清华大学数学科学系(1987-2003)及北京大学数学科学学院(2003-2009)给本科生讲授数学分析课的讲稿的基础上编成的,一方面,作者力求以近代数学(集合论,拓扑,测度论,微分流形和微分形式)的语言来介绍数学分析的基本知识,以使同学尽早熟悉近代数学文献中的表述方式。另一方面在篇幅允许的范围内,作者尽可能地介绍数学分析与其他学科(特别是物理学)的联系,以使同学理解自然现象一直是数学发展的重要源泉,全书分为三册,册包括:集合与映射,实数与复数,极限,连续函数类,一元微分学和一元函数的Riemann积分;第二册包括:点集拓扑初步,多元微分学,测度和积分;第三册包括:调和分析初步和相关课题,复分析初步,欧氏空间中的微分流形,重线性代数,微分形式和欧氏空
《发展方程边界元法及其应用》以抛物型方程、双曲型方程、Maxwell方程等初边值问题为例,介绍了求解发展型偏微分方程的边界元方法(经典边界方法、自然边界元法)及有限元与边界元耦合法,总结了作者近些年来在此研究领域的研究成果,其中包括初边值问题的边界积分归化与自然边界归化方法、离散化求解边界积分方程的数值方法、边界元近似解的收敛性和误差分析方法,以及边界元法的一些应用。
《数学分析(上册)/普通高等教育“十二五”规划教材》的编写注重理论、方法和实例的有机结合,力求做到以例示理,以题示法,注重选题的广度与梯度,达到从一题到一类,从一类到一系列的效果.《数学分析(上册)/普通高等教育“十二五”规划教材》内容选取适当,结构严谨,逻辑清晰,叙述详细,通俗易懂,便于自学。《数学分析(上册)/普通高等教育“十二五”规划教材》内容包括映射与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、实数及其完备性、不定积分、定积分、定积分的应用和广义积分等。书后附有习题答案。
《数值分析》系统阐述了数值分析的基本概念和理论。内容包括:数值计算的误差,解线性方程组的直接法和迭代法,线性方程组的*小二乘解,矩阵特征值问题,插值法,函数逼近,曲线拟合,数值积分,解非线性方程和方程组的数值方法。
《傅里叶分析导论》由在国际上享有盛誉普林斯大林顿大学教授Stein撰写而成,是一部傅立叶分析的入门教材,理论与实践并重,为了便于非数专业的学生学习,全书内容简明、易懂.全书分为三部分,部分介绍傅立叶级数的基本理论及其在等周不等式和等分布中的应用;第二部分研究傅立叶变换及其在经典偏微分方程及Radom变换中的应用;第三部分研究有限阿贝尔群上的傅立叶分析。书中各章均有练习题及思考题。目次:傅立叶积分的起源;傅立叶级数和基本性质;傅立叶级数的收敛性;傅立叶积分的应用;IR上的傅立叶变换;IRd上的傅立叶变换;有限傅里叶分析;Dirichlet定理。
本书系统地总结了《数学分析》的基本知识、基本理论、基本方法和解题技巧,收集了大量的具有代表性的题目(其中大部分题目是来自于近几年一些高校的研究生入学试题),由浅入深地介绍了《数学分析》的解题思路和解题方法,在解题过程中启发读者进而打开思路并掌握技巧,使学生能够更好地融汇知识、理解概念和掌握方法,以提高学生分析问题和解决问题的能力。 本书包括:极限与连续、一元函数微分学、一元函数积分学、级数等8章内容。
《数学物理方程》由编者支元洪根据在云南大学 数学与统计学院多年讲授“数学与物理方程”课程所 使用的讲义整理而成。 主要介绍了四类基本方程的推导,求解一阶非线性偏 微分方程边值问题的特征法,二阶半线性偏微分方程 的 分类理论,以及求解一般二阶线性偏微分方程定解问 题的分离变量法、积分变换法和Green函数法。在此 基 础上,着重讲述了研究偏微分方程解的定性理论的能 量法和极值原理。本书共分5章,逻辑严谨、叙述准 确、 结构清晰、内容充实,并附适量习题供读者巩固知识 之用。 本书可作为数学类各专业高年级本科生和理工类 有关专业研究生的教材,教学时数为70~80学时,也 可供广大高校相关教师和科技工作者参与。