本书根据J. R. 曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解与接受,本书采用将流形嵌入高维欧氏空间中的观点讲述,故而又在第九章给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形。
本书是Folland教授的名著《实分析》的第二版。与*版相比,在一些内容的编排上作了适当调整,同时引入了一些新的内容,去掉了已经过时的内容,更有利于学生学习与思考。作为一部优秀的教材,内容不仅涵盖了分析学的基本内容和技巧,还介绍了一些从事其他领域的研究工作所必需的基础知识。此外,教材中的大量习题,能够进一步拓展思维,从而易于更加深入地了解这些内容背后的真实想法。本书适用于理工类专业及相关专业的研究生。
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。本书详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解本书的内容。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981年第1版出版以来,到2015年已经修订、增补至第7版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,第二卷内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。与常见的数学分析教材相比,本卷内容相当新颖,系统地引进了现代数学(包括泛函分析、拓扑学和现代微
本书是随机分析方面的名著之一。以主题广泛丰富,论述简洁易懂而又不失严密著称。书中阐述了各领域的典型应用,包括数理金融、生物学、工程学中的模型。还提供了很多示例和习题,并附有解答。读者对象:数学分析及金融数学专业的高年级本科生,研究生和研究人员。
本书从该理论的最初起源 积分函数的最小化开始,对该理论做了较深的讨论。变分观点的发展很大程度上和优化、平衡、控制这些理论是紧密相关的。书中在一个统一的框架之中,全面讲述了经典分析和凸分析之外的变分几何和次微积分知识。也讲述了集收敛、集值映射和epi收敛、对偶和正则被积函数。目次:最大和最小;凸性;柱体;集合凸性;集值映射;变分几何;上境图极限;次梯度和次导数;Lipschitzian性质;次微积分;对偶化;单调映射;二阶理论;可测性。读者对象:数学专业的研究生、老师和相关的科研人员。In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis refiects this breadth. For a lon
本书是一部数学经典教材,初版于1965年,以作者在东京大学任教十余年所用的讲义为基础写成的。经过几次修订和增补,1980年出了第5版,本版(第6版)实际上是第5版的重印版。全书论述了泛函空间的线性算子理论及其在现代分析和经典分析各领域中的许多应用。目次:预备知识;半范数;Baire-Hausdorff定理的应用;正交射影和riesz表示定理;Hahn-Banach定理;强收敛和弱收敛;傅里叶变换和微分方程;对偶算子;预解和谱;半群的解析理论;紧致算子;赋范环和谱表示;线性空间中的其他表示定理;遍历性理论和扩散理论;发展方程的积分。 读者对象:数学专业的研究生和科研人员。
维拉尼所著《*输运(第1分册)(英文版)》是全面讲述*输运——无论新老问题的专著。本书讲学严谨,基于大量的文献扩充改变而成,使得这本书成为一本相当有价值的宝典类书籍,证明完整自成体系,扩充了文献注解。适于*输运方面的每个科研人员和研究生,博士及以上的人员不需要预备知识可以完全读懂该书。
本书汇集了泛函分析教学过程中学生提出的大量问题 , 收集了很多主要概念和定理的反例, 主要是关于度量空间、赋范空间、 Hilbert空间和算子等问题和反例.
本书在一般测度论观点下的概率论和随机过程初步知识的基础上,介绍了随机分析学的基础及较新成果,全书分五章:章是预备知识,包括随机过程一般理论和鞅论初步;第二章是近代随机积分理论;第三章讨论连续半鞅的随机微分、伊藤公式及其应用;第四章介绍随机微分方程的现代理论;第五章是Malliavin随机分析。
本书是分析领域内的一部经典著作。主要内容包括:抽象积分、正博雷尔测度、LP-空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、*大模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、HP-空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式一致逼近等。另外,书中还附有大量设计巧妙的习题。本书体例优美,实用性很强,列举的实例简明精彩,基本上对所有给出的命题都进行了论证,适合作为高等院校数学专业高年级本科生和研究生的教材。
数据存在于特定的时间和空间中,其复杂的分层结构是一种普遍现象. 充分借助于数据的这一特点,可以大大提高统计分析的有效性. 本书致力于介绍复杂分层数据分析前沿知识,侧重于算法、仿真与实证研究. 内容主要包括:分层线性模型、分层广义线性模型、分层非线性模型、分层半参数模型和分层分位回归模拟等. 本书可作为统计学及其相关领域的本科生、研究生的教材,亦可供教师和科技人员参考。
《统一无穷理论》根据理想计数器模型,综合运用三维视野(自然数数值维、编码长度维和∞的可达性维),指出传统自然数集概念和层次无穷理论的局限性,提出完整的自然数集概念和统一无穷理论:①肯定自然数的二重性(内蕴性和排序性)和无穷的双相性(潜无穷和实无穷并存)。②指出潜无穷过程只能生成由有穷自然数组成的开放序列,它不是无穷集合;实无穷过程可生成由所有自然数组成的无穷集合,包括有穷自然数、趋近无穷自然数和无穷大。③断定完整的自然数集和单位区间实数集等势,2 ∞ =∞是∞的基本性质,∞和无穷小δ=1/∞存在。④提出数的理想模型和规范模概念,证明超越数和无理数都是无穷集,得到了超越数的判定定理。 《统一无穷理论》是用计算机科学原理和方法论证数学基础问题的初次尝试,重点在于阐述统一无穷理念,适于研
本书通过大量丰富的实例,帮助读者实现从基本的常微分方程向更多高级概念(偏微分方程、傅里叶级数和边界值问题等)的顺利过渡。作者轻松的语言风格使得书中的材料通俗易懂,尤其适合那些渴望了解更多和更深微积分知识的读者。 本书在第1版的基础上增加了偏微分方程在工程和物理学方面的应用,并且提供了更多数学证明和偏微分方程的原理。此外,本书的每一小节后都配备了大量的习题,并在页边提供了注释、国标或重要的公式等,突出了书中的重点与难点,方便读者自学。 本书提供读者利用计算机辅助学习,旨在使读者更直观、更清晰地理解和掌握书中所讲述的题材。读者可以利用从作者网站上下载的Mathematica文件进行上机实践。
非线性色散方程:局部和整体分析(影印版)