《AP微积分辅导手册》融汇众多成功案例,直击中国学生的薄弱点,解构整门考试的知识点、考点,为参加AP微积分考试的中国学生提供一套应对AP微积分(AB BC)考试的完备方案。希望考生学完本书内容,可以顺利通过考试。 《AP微积分辅导手册》一书的内容有:函数、极限和连续性、导数、微分、不定积分和定积分、积分的应用、微分方程和级数,涵盖了AP微积分AB和AP微积分BC考试大纲中要求的全部考点,并且有相关的例题演示,在理论讲解上兼顾实战性。 本书适合准备前往海外读大学的高中生,准备参加AP考试的考生学习使用,同时可用作相关培训和辅导机构的参考教材。
本书是由国家自然科学基金委员会数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》之一。 本书是俄罗斯莫斯科大学经典数学教材之一,是微分几何教程的简明阐述,在大学数学系两个学期中讲授。内容包含:一般拓扑,非线性坐标系,光滑流形的理论,曲线论和曲面论,变换群,张量分析和黎曼几何,积分法和同调论,曲面的基本群,黎曼几何中的变分原理。叙述中用大量的例子说明并附有习题,常有补充的材料。 本书适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
拟微分算子理论自20世纪中叶形成以来,经过几十年的发展已成为现代分析理论的重要组成部分,并特别在偏微分方程理论及相关问题的研究中成为必不可少的工具。本书详细介绍了拟微分算子的基本理论及其在偏微分方程中的应用,为基础数学与应用数学专业的研究生、教师及相关研究人员提供了宝贵的参考。本次修订少量更新了部分章节内容并增加了后记。 本书既是这一领域的一本入门书,又介绍了该理论在偏微分方程中几个最重要方面的应用,可为读者进一步学习与研究做准备。
本书根据高等院校经管类本科专业微积分课程的教学大纲及考研大纲编写而成,并在第四版的基础上进行了修订和完善。引入了大量的数学实验,可以通过扫描对应二维码即时实现实验操作。本书共分上下两册,本册包括函数与极限、一元微分学、一元积分学、多元微分学、多元积分学、无穷级数、微分方程与差分方程等知识。本书可作为高等院校(少课时)、独立学院、成教学院、民办院校等本科院校以及具有较高要求的高职高专院校相关专业的数学基础课教材,并可作为上述各专业领域读者的教学参考书。
This revision of the 1983 second edition of"Elliptic Partial Differential Equations of Second Order" corresponds to the Russian edition, published in 1989, in which we essentially updated the previous version to 1984. The additional text relates to the boundary H61der derivative estimates of Nikolai Krylov, which provided a fundamental component of the further development of the classical theory of elliptic (and parabolic), fully nonlinear equations in higher dimensions. In our presentation we adapted a simplification of Krylov's approach due to Luis Caffarelli.
求非线性问题的解析近似解最著名的是摄动法,已有数百年历史,但其有效性强烈依赖物理小参数,且不能保证摄动数的收敛,原则上仅适用于弱非线性问题。本书作者1992年提出的同伦分析方法,其有效性与是否存在物理小参数无关,能确保级数解收敛,克服了摄动法几乎所有的局限性,被国内外学者誉为该领域的一个重要里程碑。 本书分为上下两卷。上卷描述同伦分析方法的基本思想和相关理论;下卷给出基于同伦分析方法和数学软件Mathematica开发的软件包BVPh 1.0及其应用举例,以及求解非线性偏微分方程的一些典型例子。本书适合大学高年级本科生和研究生,以及应用数学、物理、力学、金融、工程等众多领域的科学家和研究人员阅读。
本书介绍了常微分方程理论中一些的基础知识,内容包括常微分方程的初等积分法、解的存在**性、解关于初值和参数的连续依赖性和连续可微性、解析微分方程解析解的存在性及其应用、微分方程组的可积理论及其在求解偏微分方程中的应用、常系数线性微分方程和微分方程组的解法及其在平面微分方程组局部结构研究上的应用、变系数线性微分方程组的Floquet理论、Sturm-Liouville边值问题及其在波动方程和热传导方程求解中的应用、微分方程解的稳定性判定、极限环存在性的基础知识,并简要介绍了结构稳定性和分支理论的基础知识。书中还介绍了如何利用Mathematica软件求解微分方程和作平面微分系统的相图。书末给出Ascoli-Arzelà引理的初等证明和实矩阵对数存在性的证明。
目前《微积分/数学分析》课程的教材已经很多,但基本上都是为数学专业编写的,因而理论的完整性、证明的严格性强调的比较充分;为理工科非数学类专业编写的《微积分》教材则往往更多侧重在计算方面。实际上,对于不少非数学专业的优秀理工科学生而言,微积分计算技能的培养和严谨的数学思维的训练常常是都需要的;另一方面,即便对于数学专业的同学,在展示完整优美的数学理论体系的同时,往往也需要一些如何思考、把握相关内容的来源、基本(粗糙一些)的思路的引导。随着新一代学生在中学教育阶段严谨的逻辑训练的减弱(例如,平面几何的训练比上世纪学生有明显的减退),以及对于学习完整演绎方式构建微积分体系的动力减弱,需要以一种更为直观、生动的方式传授给学生微积分的内在动机、目标和各部分的关系。这样才能吸引他们投
本书是一本 有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用 简单、 有趣、 容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你 通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得 从容自信。
该书稿是《微积分(经管类 简明版 第五版)》配套的辅导书。该系列教辅书均根据教材章节顺序建设了相应的学习辅导内容,其中每一节的设计中包括了该节的主要知识归纳、典型例题分析与习题解答等内容,而每一章的设计中包括了该章的教学基本要求、知识点网络图、题型分析与总习题解答,有助于学生巩固教材知识并拓展应用。
本书的主要内容包括函数的极限与连续、导数与微分及其应用、不定积分与定积分及其应用等。本书突出 数学为根本,应用为导向 的特点,内容难度适宜,语言通俗易懂,逻辑清晰。本书每节重点内容均配套微课讲解视频,每章附有详细的思维导图,梳理脉络,易教利学。每节后附有 基础训练 与 提升训练 分层练习,每章结束配套总结提升习题,同时提供参考答案。本书配套习题题型丰富,满足学生参加高等教育自考、专升本等进一步的升学要求。本书可作为高职公共基础课教材使用,也可供感兴趣的读者阅读参考。
本书是俄罗斯科学院院士О.А.奥列尼克多年来在莫斯科大学数学力学系为大学三年级学生讲授该课程基础上的扩充。内容包括偏微分方程理论的古典与现代理论的基础部分,以及泛函分析、广义函数理论、函数空间理论方面的一些知识。作者是И.Г.彼得罗夫斯基的学生,在偏微分方程这个方向享有盛名。此书反映了莫斯科大学在这个课程上,20世纪后半叶至今的新情况,可供我国偏微分方程课教学参考。 本书可供综合大学和师范院校数学、物理、力学及相关专业的教师和学生参考,也可供工科院校应用数学系师生参考。
本书是论述不等式的理论与方法的一本专门著作,主要介绍了一些特殊类型的不等式,它们主要是三角不等式与几何不等式,以及*值不等式、复数不等式、数列不等式、函数不等式等. 本书可供不等式研究工作者以及高等师范类院校数学教育专业的学生和数学爱好者参考阅读.
本书注重常微分方程理论方法的同时,也注重常微分方程的工程实际应用。旨在提高学生发现问题和解决问题的能力,通过理论和实践的反复循环,实现螺旋式上升。 本书共七章。第一章简要介绍了工程问题的常微分方程建模,微分方程和动力系统的基本概念。第二章阐述了常微分方程的初等积分法,包括一些经典的一阶微分方程和特殊的高阶微分方程的解法。第三章给出了常微分方程的基本定理,特别介绍线性常微分方程的一些基本概念和基础理论。第四章和第五章分别讲述了线性常微分方程和线性常微分方程组,包括基本概念、求解方法及工程应用。第六章主要介绍了非线性微分方程的定性分析,包括奇点的稳定性、中心流形定理、分岔等。第七章阐述了常微分方程的数值解法,主要介绍了欧拉法、改进的欧拉法和龙格库塔方法,结合Matlab和Maple软件实现微
《微分几何讲义(第二版)》系统地论述了微分几何的基本知识。全书共七章并两个附录。作者以较大的篇幅,即前三章和第六章介绍了流形、多重线性函数、向量场、外微分、李群和活动标架法等基本知识和工具。在具备了上述宽广而坚实的基础上,论述微分几何的核心问题,即连络、黎曼几何以及曲面论等。第七章复流形,既是当前十分活跃的研究领域,也是 作者研究成果卓著的领域之一,包含有作者独到的见解和简捷的方法。 两个附录,介绍了极小曲面与规范场理论,为这两活跃的前沿领域提出了不少进一步研究课题。《微分几何讲义(第二版)》可作为高等院校数学和理论物理等专业高年级、研究生选修课和研究生课教材,或学习参考书,也可供从事数学和物理等相关学科研究人员参考。
In 8 years after publication of the first version of this book,the rapidly progressing field of inverse problems witnessed changes and new developments Parts of艾赛科威专著的《偏微分方程中的逆问题(第2版)》were used at several universities.and many colleagues and students as well asmyselfobserved several misprintsandimprecisions Some ofthe research problems from the first edition have been solved This edition serves the purposes of reflecting these changes and making appropiate corrections 1 hope that these additions and corrections resulted in not too many new errors and misprints Chapters I and 2 contain only 2-3 Pages of new materiaIJike in sections 1.5. 2 5 Chapter 3 order equations and included bound……
《微积分之高分突破》是作者在多年来本科教学和考研辅导经验的基础上编写而成的.全书共分为十章,每章包括四个模块,即知识要点,题型归纳,综合练习及综合练习详解.该套丛书在内容编排上,知识点不前后穿插,便于读者同步学习。本书编写的主要目的有两个,一是帮助学有余力的本科生更好地学习 微积分 课程,开阔学习视野,拓展解题思路;二是为了满足学生报考研究生的需要,本书编写紧扣数学三考研大纲,贴切考试实际,按题型归类、内容详略得当,综合练习全部配有详细的解答过程,有些一题多解,帮助考研学生在短时间内迅速掌握各种解题方法和技巧,提高综合分析问题、解决问题的能力,以达到融会贯通、举一反三的学习效果.《微积分之高分突破》既可以作为普通高等院校工科类、经管类本科生学习 微积分 课程的同步训练用书,也可以