本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
本书共9章,包括:一般概念、已解出导数的一阶方程的若干可积类型,已解出导数的一阶方程的解案存在问题,未解出导数的一阶方程,高阶微分方程,线性微分方程的一般理论,特殊形状的线性微分方程,常微分方程组,偏微分方程、一阶线性偏微方程,一阶非线性偏微方程,最后附有答案。 本书适合数学专业师生及数学爱好者参考阅读。
本书共六章。第一章讲述实域内常微分方程理论的基本知识,包含:解的存在、唯一和对初值的连续相依性定理;动力体系的概念;积分线在常点附近的局部直性等。第二章讲述庞加莱(J.H.Poincare)和本迪克森(I.O.Bendikson)所创建的积分线在平面和锚圈面上的定性理论及其近代的发展。第三章讲述 维微分方程组的解的渐近性状和李雅普诺夫(A.M.Lyapunov)式稳定性的解析判定方法。第四章讲述n维微分方程组的研究。第五章讲述由苏联学者马尔科夫(A.A.Markov)引入作为度量空间自身变换的单参数群的一般动力体系的理论。第六章讲述具有不变测度的一般动力体系的度量理论。 本书适合高等院校师生及数学爱好者研读。
《流形上的层》编著者柏原正树。 层论是代数拓扑、代数几何和偏微分方程的交叉形成得一个很现代,很活跃的领域。《流形上的层(英文版)》从层论的基础讲起,强调微局部观点。包括了许多有趣的观点,写作风格清晰明了,将数学的这个全新,庞大的分支展现给读者。
本书的内容为叙述近代复变函数论的方法对于力学的一个特殊问题(重刚体绕不动点运动问题)的应用,也就是微分方程的解析理论的方法对于动力学方程的积分法的应用。 本书大体分为四部分:第一部分介绍了理论力学的基本知识;第二部分介绍了重刚体绕不动点运动的各种情形以及在这些情形下的积分法;第三部分介绍了复变函数的基本知识;最后一部分给出了运动方程积分法的某些补充。 本书可供数学、力学、物理学等相关专业的人员参考使用。
本书是在1996年第六版《常微分方程》(德文)一书的基础上编写而成的。本书主要介绍了常微分方程的基础理论,内容包括:可积一阶微分方程,微分方程解的存在性和*性,微分方程的初极值问题,边值问题和特征值问题,稳定性与渐进稳定性理论。此外,本书还增加了在一般相关教材中很少涉及但具有一定难度的内容,并对一些复杂基本定理给出了新的证明。阅读本书须具备一定的计算代数、线性代数及泛函分析的基础知识。 目次:一阶微分方程,一些可积的例子;一阶微分方程理论;一阶系统,离阶微分方程;线性微分方程;复线性系统;边值问题与特征值问题;稳定性与渐进稳定性。
本书从常识性的平凡道理出发, 不用极限概念也不用无穷小概念, 直截了当地定义了函数的导数, 证明了导数的常用性质; 定义了定积分, 推出了微积分基本定理. 严谨而不失直观的推理, 颠覆了微积分必须以极限概念为基础的传统观点. 全书共 18 章, 前 10 章用作者发现的新方法构建了一元微积分的逻辑框架; 后 8 章阐述新方法与传统体系的关系和接轨的方案, 以及一些重要的微积分知识. 本书化解了传统微积分教学的若干**难点, 为建立高中和大学的微积分新体系描绘了蓝图.
本书是作者在泛函微分方程理论的多年研究工作的基础上写成的,着重介绍具有无限时滞泛函微分方程的相空间理论及其应用。本书共8章,主要包括:一般相空间理论及其应用、ψh空间及其应用、ψg空间及其应用、伪度量相空间、可变时滞泛函微分方程的局部理论、相空间理论在生物数学中的应用、具有无限时滞的泛函方程的基本理论、时标动力学方程的周期性等。
常微分算子是在Fourier方法、Sturm-Liouville理论与Hilbert空间无界算子理论的基础上发展起来的一门数学分支,是近代量子力学、数学物理及工程技术的重要数学工具之一.本书系统地讲述了:Hilbert空间线性算子的一般知识和由微分算式生成的算子的基本概念;常型自伴微分算子的谱分解,即经典的Sturm-Liouville理论;对称算子的亏指数与自伴扩张问题;奇型微分算子的谱分解,即Weyl-Titchmarsh理论;微分算子亏指数理论的若干发展概况等.
不管你是理工科系的学生,还是学商业、国际贸易、经济,可能都有这样的微积分修谋经验:无论多么专心听讲,教授讲的内容你仍然听不懂。本书试图告诉读者 “千万不要误以为昕不懂全是自已的错!”本书是《微积分之屠龙宝刀》的续集,内容从极座标、无穷级数的收敛、空间向量,到参数曲线、多变数函数、偏导数、多重积分、向量场。想换一种方式,理锯这些令人头疼的课题吗?目的就是希望帮助读者更容易了解一般教科书里的精髓。
偏微分方程是近代以来发展迅速的一门学科,它在数学与物理的很多分支领域有着重要的应用。本书是一部偏微分方程的 著作,里面囊括了偏微分方程很多重要的且基本的内容,其中一维波动方程、热传导方程、半平面上的椭圆方程、Schrodinger方程描述的氢原子模型,都是大学阶段相关专业所应学到的内容。此外,本书还包含了类型甚广的习题,并配有部分习题答案以供参考。本书是为大学的理工类专业的学生编写的,也可作为相关专业研究生的参考用书。