本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
微分几何讲义(修订版)
《微积分学教程(第1卷)(第8版)》是一部卓越的数学科学与教育著作。自*版问世50多年来,本书多次再版。至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一。并被翻译成多种文字,在世界范围内广受欢迎。 本书所包括的主要内容是在20世纪初*后形成的现代数学分析的经典部分。本书*卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。 本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。 本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学
本书是一本介绍时滞微分方程稳定性理论的入门书,由6章和附录组成第1章是绪论,以简单的一维Logistic方程为出发点,结合丰富的计算机数值模拟,简要直观地概括了时滞对方程动力学性质的影响。第2章简要介绍传统的特征值方法在一些特殊的一维和二维线性自治方程零解稳定和振动性研究中的应用。第3章以简单独特的方式介绍Liapunov-Razumikhin方法的基本思想和在一些具体方程中的应用。第4章和第5章主要介绍时滞微分方程解的基础理论,主要包括解的存在唯一性,解的延拓和解对初始值的连续依赖性以及线性自治方程生成的解半群的分解等第6章详细介绍基于Liapunov泛函方法与Liapunov-Razumikhin方法建立的稳定性定理以及LaSalle不变性原理。为方便读者,本书在附录一和附录二中还介绍一些超越方程零点分布问题以及Dini导数的概念与性质。
本书系统全面地介绍了微分学的相关理论,共包含11章内容,分别为基本公式、数、量、函数、极限、连续性、微分法、代数式的微分法则、导数的各种应用、逐次微分法及其应用、超越函数的微分法。 本书适合大学数学系师生及数学爱好者参考阅读。
本书力求对分数阶微分方程的差分方法作个简明介绍.全书分为6章.第1章介绍4种分数阶导数的定义,给出两类*简单的分数阶常微分方程初值问题解析解的表达式;介绍分数阶导数的几种数值逼近方法,研究它们的逼近精度,并应用于分数阶常微分方程的数值求解.这些是后面章节中分数阶偏微分方程数值解的基础.第2~6章依次论述求解时间分数阶慢扩散方程的有限差分方法、求解时间分数阶波方程的有限差分方法、求解空间分数阶偏微分方程的有限差分方法、求解一类时空分数阶微分方程的有限差分方法以及求解一类时间分布阶慢扩散方程的有限差分方法.对每一差分格式,分析其**可解性、稳定性和收敛性.
本书共9章,包括:一般概念、已解出导数的一阶方程的若干可积类型,已解出导数的一阶方程的解案存在问题,未解出导数的一阶方程,高阶微分方程,线性微分方程的一般理论,特殊形状的线性微分方程,常微分方程组,偏微分方程、一阶线性偏微方程,一阶非线性偏微方程,最后附有答案。 本书适合数学专业师生及数学爱好者参考阅读。
本书系统地介绍了量纲分析、Lie无穷小变换以及在常微分方程(组)和偏微 分方程(组)中的应用,全书共分四章.第1章介绍了量纲分析、有关的重要原理及 其在偏微分方程不变解中的应用.第2章发展了Lie无穷小变换和Lie代数,给出 了一些基本定理和性质,另外,详细给出了无穷小变换的高阶展开公式.第3章主要讨论Lie对称在各种常微分方程(组)中的应用,包括一阶、二阶和更高阶的方 程以及常微分方程的初值问题等.另外,还讨论了接触对称、高阶对称和伴随对称.第4章讨论Lie对称在各类偏微分方程(组)中的应用.每节后附有大量经典的例子,供读者进一步熟练掌握Lie对称及其拓展类型的使用方法,详略得当,易于读者阅读.
本书共分为2卷三册,内容以及形式上有如下三个特点:一是引导者直达本学科的核心内容;二是注重应用,指导读者灵活运用所掌握的知识;三是突出了直觉思维在数学学习中的作用。作者不掩饰难点以使得该学科貌似简单,而是通过揭示概念之间的内在联系和直观背景努力帮助那些对这门学科真正感兴趣的读者。本书*章主要围绕着一元函数展开讨论,二、三、四章分别介绍了微积分的基本概念、运算及其在物理和几何中的应用,随后讲述了泰勒展开式、数值方法、数项级数、函数项级数、三角级数,*后介绍了一些与振动有关的类型简单的微分方程。本书各章均提供了大量的例题和习题,其中一部分有相当的难度,但绝大部分是对正文内容的补充。
本书为日本数学家小平邦彦晚年创作的经典微积分著作,有别于一般的微积分教科书,本书突出“严密”与“直观”的结合,重视数学中的“和谐”与“美感”,讲解新颖别致、自成体系,论证清晰详尽、环环相扣,行文深入浅出、流畅易读,从原理、思想到方法、应用,处处体现了小平邦彦的深厚功力与广阔视野。作者着眼数学分析的深处,结合自身独到的思考与理解,从严谨的实数理论出发思谋微积分,通过巧妙引导,启发读者自主思考,提升对微积分的领悟理解程度。 本书是小平邦彦为后人留下的一份重要文化财富,不仅值得数学专业人士研读,对于需要微积分知识的其他理工科学生和专业人员也具有深刻启示。
本书系统讲述了偏微分方程一般理论的主要结果和研究方法。主要内容包括:实分析与泛函分析在Sobolev空间中的应用,整数次与分数次Sobolev空间的基本性质和基本技巧,如逼近理论、紧嵌入理论、迹定理、单位分解等基本理论以及局部化、平直化、光滑化和紧支化等技巧,二阶线性椭圆方程的各类边值问题弱解的存在唯一性、正则性、极值原理、Schauder理论等方面的主要结果以及泛函方法、特征值方法、差商方法等现代偏微分方程方法和De Giorgi迭代技巧,二阶线性抛物方程和二阶线性双曲方程的基本理论,弱解的存在唯一性、正则性,能量方法,Galerkin方法,Lions定理与发展方程以及线性抛物型方程的Schauder理论和Lp理论,一阶线性双曲型方程式的特征线方法,一阶线性双曲型方程组的基本概念和对称双曲系统的黏性消失法等。
本书这是一套3卷集经典名著,版曾影印出版,广受好评。第2版新增内容312页(3卷),这是第3卷。本卷主要论述非线性偏微分方程。其中包括经典连续统力学方程和微分几何中的方程,以及非线性扩散问题。书中论及的分析方法包括索伯列夫空间理论、hˉlder空间理论、hardy空间理论和morrey空间理论。非线性分析用的泛函空间和算子理论;非线性椭圆方程;非线性抛物方程;非线性双曲方程;不可压缩流用的欧拉方程和navier-stokes方程;爱因斯坦方程。读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。 读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。
本书介绍了常微分方程的基本解法与建模应用方法。主要内容包括:常微分方程的初等积分法、高阶线性微分方程的解法、线性微分方程组的解法、常微分方程的算子解法、常微分方程的数值解法及其C程序设计、Maple软件在解常微分方程中的应用、常微分方程的建模应用。部分内容是云南师范大学“微分方程”精品课程教学团队十多年来的教学实践与应用研究的特色成果。
本书共六章。第一章讲述实域内常微分方程理论的基本知识,包含:解的存在、唯一和对初值的连续相依性定理;动力体系的概念;积分线在常点附近的局部直性等。第二章讲述庞加莱(J.H.Poincare)和本迪克森(I.O.Bendikson)所创建的积分线在平面和锚圈面上的定性理论及其近代的发展。第三章讲述 维微分方程组的解的渐近性状和李雅普诺夫(A.M.Lyapunov)式稳定性的解析判定方法。第四章讲述n维微分方程组的研究。第五章讲述由苏联学者马尔科夫(A.A.Markov)引入作为度量空间自身变换的单参数群的一般动力体系的理论。第六章讲述具有不变测度的一般动力体系的度量理论。 本书适合高等院校师生及数学爱好者研读。
《偏微分方程.第2卷(第2版)》这是一套3卷集经典名著,版曾影印出版,广受好评。第2版新增内容312页(3卷),这是第2卷。本卷在第1卷的基础上进一步讨论线性偏微分方程中的一些高等问题,其中包括伪微分算子、自伴算子的泛函分析和wiener测度。书中还介绍了微分几何的基本概念、椭圆微分算子的谱理论、由障碍产生的波动散射理论、狄拉克算子用的指数理论、布朗运动和扩散等。 目次:伪微分算子;谱论;由障碍产生的散射;狄拉克算子和指数理论;布朗运动和位势论;-neumann问题;联络和曲率。 读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。