本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
本书是作者多年在复旦大学讲授“数学分析原理”课程的讲义基础上编写而成的。全书共7章,内容包括:分析基础、实数系基本定理,极限与连续,微分,积分,级数,多元函数微积分,反常积分和含参变量积分。教材注重思想性,在内容上尽量做到融会贯通,突出理论的严密性,同时每章都精选了例题与习题。
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦!
《流形上的层》编著者柏原正树。 层论是代数拓扑、代数几何和偏微分方程的交叉形成得一个很现代,很活跃的领域。《流形上的层(英文版)》从层论的基础讲起,强调微局部观点。包括了许多有趣的观点,写作风格清晰明了,将数学的这个全新,庞大的分支展现给读者。
《索伯列夫空间和插值空间导论》是以作者研究生教程的讲义为蓝本整理扩充而成,全面讲述了索伯列夫空间和插值理论。书中包括42章,每章尽可能多的包括研究生学习所需的材料,不仅是一部研究生学习的讲义材料,也是很多老师学者关心的课题。通过大量的脚注讲述了本教程的形成过程有关老师的趣闻轶事,这使本书不仅是一本很完善的教程,而且也非常适用于相关专业的科研人员。 目次:历史背景;勒贝格测度,卷积;卷积光滑;阶段,radon测度和分布;张量积密度,结果;支集观点扩充;索伯列夫嵌入理论:1[=p[n;索伯列夫嵌入定理,n[=p[无穷;庞加莱不等式;平衡定理:紧嵌入;边界的一般性,结果;边界上的迹;格林公式;傅里叶变换;hs(rn)迹;太小点的证明;紧嵌入;lax-milgram定理;h(div,ω)空间;插值的背景,复杂方法;实插值,k
本书是在1996年第六版《常微分方程》(德文)一书的基础上编写而成的。本书主要介绍了常微分方程的基础理论,内容包括:可积一阶微分方程,微分方程解的存在性和*性,微分方程的初极值问题,边值问题和特征值问题,稳定性与渐进稳定性理论。此外,本书还增加了在一般相关教材中很少涉及但具有一定难度的内容,并对一些复杂基本定理给出了新的证明。阅读本书须具备一定的计算代数、线性代数及泛函分析的基础知识。 目次:一阶微分方程,一些可积的例子;一阶微分方程理论;一阶系统,离阶微分方程;线性微分方程;复线性系统;边值问题与特征值问题;稳定性与渐进稳定性。
这是一部译自俄文的享誉世界的大型英文数学工具书。经过半个世纪的多次补充和修订,它已成为数学家、物理学家和工程技术人员常用的主流工具书。本书收集了1万2千余条从初等函数到特殊函数的积分公式、级数和公式及乘积的数学用表。本书是第8版,本版在第7版的基础上做了修订,其中对上一版的后三章内容做了调整。 目次:导论:初等函数;初等函数的不定积分;初等函数的定积分;特殊函数的不定积分;特殊函数的定积分;特殊函数;矢量场理论;积分不等式;傅里叶变换,拉普拉斯变换和梅林变换。
《变分法(第4版)》是《变分法》第四版,主要讲述在非线性偏微分方程和哈密顿系统中的应用,继版出版十八年再次全新呈现。整《变分法(第4版)》都做了大量的修改,仅500多条参考书目就将其价值大大提升。第四版中主要讲述变分微积分,增加了该领域的*进展。这也是一部变分法学习的教程,特别讲述了yamabe流的收敛和胀开现象以及*研究发现的调和映射和曲面中热流的向后小泡形成。
本书一部讲述代数曲线的入门书籍,可以作为一二年级数学专业的教程,具备基本的微积分知识可以完全读懂这本书。通过分类实数上的不可约三次曲线和证明它们的点能够形成abelian群,使得椭圆曲线的讲述非常易于学习,书中包括了两曲线相交数上的bezout定理的简单证明。在这新的版本中深入研究了幂级数参化曲线,并且列举出了参化的两大用处,计数曲线的多相交和曲线对偶性的证明及其重叠。目次:曲线的相交;二次曲线;三次曲线;参化曲线。
本书阐述微分方程有限差分数值求解方法. 首先介绍常微分方程初边值问题的求解方法, 以及收敛性、相容性和稳定性分析; 其次介绍偏微分方程(包括椭圆型方程、抛物型方程和双曲型方程)的有限差分求解方法和一些重要的差分格式, 以及相应的理论分析; 最后介绍有限差分方法在波动方程波场模拟中的应用; 在附录中给出了一些常用公式. 本书结合教学和科研的特点, 不但具有理论的严谨性, 还有较多的例题和数值算例, 以促进理解和应用.
常微分算子是在Fourier方法、Sturm-Liouville理论与Hilbert空间无界算子理论的基础上发展起来的一门数学分支,是近代量子力学、数学物理及工程技术的重要数学工具之一.本书系统地讲述了:Hilbert空间线性算子的一般知识和由微分算式生成的算子的基本概念;常型自伴微分算子的谱分解,即经典的Sturm-Liouville理论;对称算子的亏指数与自伴扩张问题;奇型微分算子的谱分解,即Weyl-Titchmarsh理论;微分算子亏指数理论的若干发展概况等.
该书是《微积分(下册)(经管类 第五版)》配套的辅导书。该系列教辅书均根据教材章节顺序建设了相应的学习辅导内容,其中每一节的设计中包括了该节的主要知识归纳、典型例题分析与习题解答等内容,而每一章的设计中包括了该章的教学基本要求、知识点网络图、题型分析与总习题解答,有助于学生巩固教材知识并拓展应用。
微积分是现代数学的重要基础与起点,它不仅在物理学、化学和生物学等自然科学领域有着非常广泛的应用,而且也广泛地应用于社会学和经济学等人文学科领域,成为这些领域重要的研究工具,尤其是经济学,它与现代数学有着极为密切的关系。《微积分(上高等教育十一五规划教材)》主要内容包括:函数与极限、导数与微分、中值定理及其应用、积分、无穷级数、空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分、常微分方程与差分方程初步等。 《微积分(上高等教育十一五规划教材)》(作者史天勤、王永学)可供本科院校和高职高专院校各专业公共基础课使用。学好这门课程,对于培养社会所需要的高级经济技术和工程管理人才有着十分重要的意义。
本书是我校“九五”规划特色教材及“十五”规划精品教材之一,也是我校“国家工科数学课程教学基地”系列教材之一。本书根据原国家*颁发的《高等工业学校高等数学课程教学基本要求》和科技人才对数学素质的要求,本着面向21世纪强化课程体系与教学内容改革的精神,吸收国内外相关教材的长处编写的。其主要特点是;注重课程体系结构与教学内容的整体优化;重视基础,突出数学思想与方法,着力于数学素质与能力的培养;充分重视培养学生应用数学知识解决实际问题的意识与能力;注重教学适用性。 本书分上、下两册。上册包括极限理论、一元微积分与常微分方程;下册包括多元函数微积分与无穷级数。每节后配有习题及思考题,每章后配有复习题,书末附有习题答案。 本书结构严谨、论证简明、叙述清晰、例题典型、便于教学。可作为高等工
《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》是《微积分之屠龙宝刀》的续集,内容从极座标、无穷级数的收敛、空间向量,到参数曲线、多变数函数、偏导数、多重积分、向量场。想换一种方式,理解这些令人头疼的课题吗?欢迎你拿起《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》,跟随三位作者的脚步,一同披荆斩棘,度过危机,不管你是理工科系的学生,还是学商业、国际贸易、经济,可能都有这样的微积分修课经验:无论多么专心听讲教授讲的内容你仍然听不懂。《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》试图告诉读者:“千万不要误以为听不懂全是自己的错!”
本书针对数列与极限,函数及其性质,函数的图形,函数的极限与连续性,导数及其应用,不定积分,定积分等微积分初步的基本内容编写了丰富的典型计算题与练习题,并紧密联系初等数学的内容介绍了许多新鲜解法,同时给出了四百多个函数图形,书末附有习题参考答案与提示。 本书主要供各类大学非数学专业的一年级学生使用,高等院校可选作工科数学分析习题课教学参考书,也可作为高中生的课外学习参考书。