本书是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它们既是当前十分活跃的研究领域,也是作者研究成果的领域之一,含有作者独到的见解。本书每章内都附有一定数量的习题,书末附有习题解答和提示,便于读者深入学习或自学。 本书可作为综合性大学、师范院校数学系与物理系高年级本科生和研究生的教材或教学参考书,也可
《数学与人文》丛书第三十四辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分4个栏目,包含了11篇文章。 专稿 栏目收录了丘成桐先生的 几何三讲:从古代到黎曼 。 中外数学大师的经历 栏目刊载了王作跃和郭金海的文章 陈省身、华罗庚和普林斯顿高等研究院 以及另一篇纪念、回忆文章 纪念John Tate 。 国际数学家的友好交往 栏目收录了丘成桐先生纪念John Coates教授的文章以及Coates教授的生平介绍、其儿子写的悼念文章和梁志斌博士对他的采访;栏目还登载了丘成桐先生的 祝贺Karen Uhlenbeck八十华诞 , 同时收录了Uhlenbeck教授的小传;栏目的最后一篇是悼念挪威数学家Selberg的文章。 数学家趣味 栏目收录了澳门大学数学系金小庆教授的文章 书法记 。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对
本书是《数学与人文》丛书为纪念陈省身先生诞辰100 周年而出版的专辑。 书中*部分选登了历史上伟大的几何学家欧几里得、高斯、黎曼和陈省身的代表作,以显示几何学两千多年来基本思想的发展; 并介绍了索菲斯 李、嘉当、布拉施克等的生平和工作, 陈省身在继承了这些前辈们的成就基础上, 开创了整体微分几何的新时代。第二部分主要介绍陈省身的合作者, 以及他们的合作成果在如何影响现代几何学乃至代数学等领域的发展。第三和第四部分主要由陈省身的朋友、同事和学生们所写: 第三部分中的纪念文章, 反映了陈先生扎在中国传统文化中深深的根, 以及他致力于推进中国数学事业的发展, 关心、帮助年轻人的伟大人格; 该部分还介绍了国际数学联盟首次颁发陈省身奖章。第四部分适合数学家阅读, 包括陈省身数学工作的介绍, 纪念陈省身的自述文章和数学研究;*
极小曲面广泛存在于自然界中,很多问题也源于自然界,其理论已经发展成为微分几何的一个内容十分丰富的分支。《现代极小曲面讲义》主要强调利用复分析的方法来研究极小曲面,重点讨论了极小曲面的Gauss映射、Calabi猜想以及Catalan定理的复分析证明,同时作:为《现代极小曲面讲义》的重要补充,在附录中也介绍了近年来由T,H,Coldinq和WP Minicozzill发展起来的一些新的理论和方法。 本书可作为微分几何专业的高年级本科生和研究生的教材或参考书,也可供数学和物理相关领域的研究人员参考。
《卡拉比–丘流形和相关几何》是由2001年夏天norway,nordfjordeid讲述辛几何的讲义扩展而成。突出讲述calabi-yau是本书的*特点。部分讲述完整群和已校准子流形,强调特殊拉格朗日算符子流形和syz猜想;第二部分运用代数几何讲述calabi-yau流形和镜子对称。后一部分讲述紧hyperkahler流形,它具有的几何结果和calabi-yau流形有很大的关系。各部分之间过渡自然,衔接紧密紧密,是一部很好的教程。目次:黎曼完整群和已校准的几何;calabi-yau流形和镜子对称;紧hyperk?hler流形。 读者对象:数学专业的高年级本科生,研究生和科研人员。
本书共分十三章,重点讲解投影的基本知识、点线面的投影、立体的投影、轴测投影、组合形体、标高投影、立体表面展开等内容。通过实例,图文结合、循序渐进地介绍了画法几何学的基本知识、读图思路。可作为土木工程、道桥工程、城市地下空间工程、安全、力学、测绘、环境工程、暖通、给排水、建筑学、园林、规划、环境设计、工程管理、造价、土地、房地产、城市、物业、机械、交通、物流、电气、自动化、智能、通信、信息等专业本科、专科学生的教学用书,也可供相关工程技术人员参考。 与本书配套使用的《画法几何学习题及解答》(周佳新主编)由化学工业出版社同时出版。 教材和习题及解答均有配套的PPT版课件。
本书是复流形的一大经典(全英文版),也是陈省身先生著名的著作之一。该书是1995年版复流形理论第2版的修订版。本书以作者在California大学的讲义和Canadian数学学会的研讨班为蓝本,全面地讲述复流形理论在代数几何、复函数理论、微分算子等理论中的重要作用。本书的*特点是复流形理论的微分几何方法是在S.-S.Chern著作的影响下发展起来的,作为第2版对该理论的引入和表示很完美,被众多数学界的学者、专家所引用,是学习Riemann几何的一本理想参考书。
本书是“十三五” 国家重点出版物出版规划项目———现代机械工程系列精品教材,是根据*制订的“普通高等院校工程图学课程教学基本要求”,并征求多所高校具有丰富教学经验的工程图学教师的意见和建议,在总结作者近年来的教学改革实践经验的基础上修订完成的 本书的内容符合本课程教学大纲的基本要求 本次修订删除了本科学习阶段不常用的曲线 曲面内容;在第五章投影变换里增加了绕投影面平行轴的旋转以及旋转法综合问题实例,以拓展学生的解题思路 本书内容包括投影的基本知识 点和直线 平面 直线与平面以及两平面的相对位置 投影变换 立体 立体表面的交线 组合体 轴测投影和表面展开,总共十章 本书可作为高等院校本科机械类各专业使用的教材,也可供其他各类学校有关师生和广大工程技术人员参考
化学是一门与人类生活有着密切关系的基础学科。全书共分10篇,分别为能源,粮食、环境、安全、高分子材料、表面活性剂、五彩缤纷的世界、健康、食品安全、诺贝尔及诺贝尔奖。主要讲述化学在人类生存发展中的重要地位,以及所做出的贡献。 《复旦光华青少年文库·科学素养系列:化学就在你身旁》具有思想性和科学性,更具可读性和启迪性,是一本适合青少年人阅读的读物。
本书是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它们既是当前十分活跃的研究领域,也是作者研究成果的领域之一,含有作者独到的见解。本书每章内都附有一定数量的习题,书末附有习题解答和提示,便于读者深入学习或自学。 本书可作为综合性大学、师范院校数学系与物理系高年级本科生和研究生的教材或教学参考书,也
本书是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它们既是当前十分活跃的研究领域,也是作者研究成果的领域之一,含有作者独到的见解。本书每章内都附有一定数量的习题,书末附有习题解答和提示,便于读者深入学习或自学。 本书可作为综合性大学、师范院校数学系与物理系高年级本科生和研究生的教材或教学参考书,也可
项武义、王申怀、潘养廉编写的《古典几何学》采用近代观点系统介绍了古典几何学的基础知识(其中包括欧氏几何、非欧几何、解析几何、球面几何与三角、射影几何等),并着重对各种古典几何体系进行比较分析和全局探讨,突出它们的几何思想和在方法论上的创见。 《古典几何学》可作为大学和师范院校的几何学教材或教学参考书, 也可供中学数学教师进修和教学时参考。
项武义、王申怀、潘养廉编写的《古典几何学》采用近代观点系统介绍了古典几何学的基础知识(其中包括欧氏几何、非欧几何、解析几何、球面几何与三角、射影几何等),并着重对各种古典几何体系进行比较分析和全局探讨,突出它们的几何思想和在方法论上的创见。 《古典几何学》可作为大学和师范院校的几何学教材或教学参考书, 也可供中学数学教师进修和教学时参考。
本书是“十三五” 重点出版物出版规划项目———现代机械工程系列精品教材,是根据 制订的“普通高等院校工程图学课程教学基本要求”,并征求多所高校具有丰富教学经验的工程图学教师的意见和建议,在总结作者近年来的教学改革实践经验的基础上修订完成的 本书的内容符合本课程教学大纲的基本要求 本次修订删除了本科学习阶段不常用的曲线 曲面内容;在第五章投影变换里增加了绕投影面平行轴的旋转以及旋转法综合问题实例,以拓展学生的解题思路 本书内容包括投影的基本知识 点和直线 平面 直线与平面以及两平面的相对位置 投影变换 立体 立体表面的交线 组合体 轴测投影和表面展开,总共十章 本书可作为高等院校本科机械类各专业使用的教材,也可供其他各类学校有关师生和广大工程技术人员参考