《北京大学数学丛书·矩阵计算的理论与方法》系统阐述了矩阵计算这门学科的基础理论、基本方法和近十几年来发展成熟并得到了广泛应用的新成果。内容包括:矩阵知识的复习和补充,矩阵计算概论;求解线性方程组的直接法和迭代法,线性二乘问题,共轭梯度法;求解特征值问题的QR方法和同伦方法;Lanczos方法以及求解Jacobi矩阵特征值反问题的正交约化方法等。《北京大学数学丛书·矩阵计算的理论与方法》取材上,既注重基础理论的严谨性、方法的实用性,又保持了内容的新颖性,反映了该学科的进展。《北京大学数学丛书·矩阵计算的理论与方法》内容自封,各章之间相对独立,可适用于不同读者的需要。
戴建生编著的这本《机构学与机器人学的几何基础与旋量代数》起始于直线几何与线性代数,自然过渡到旋量代数与有限位移旋量,紧密联系李群、李代数、对偶数、Hamilton四元数、Clifford对偶四元数等现代数学基础,首次全面、深入地阐述旋量代数在向量空间与射影几何理论下的演变与推理,提出旋量代数与李代数、四元数代数以及有限位移旋量与李群之间的关联理论,展现出旋量理论与经典数学以及现代数学的内在关联,总结提炼出许多论证严密、意义明确的引理、定理与推论,由此阐述篇“几何基础、旋量代数与李群、李代数”,给出机构学与机器人学的几何基础与数学理论。 在第二篇“旋量系理论及机构约束与自由运动”中,运用集合论与线性代数等经典数学推导并揭示旋量系、旋量多重集及其阶数与基数的本质内涵,提出并阐述旋量系关联关系理论
《有限元方法卷:基本原理(第5版)》为有限元方法系列专著的卷——基本原理,涵盖了有限元分析的一些基础领域,同时还涉足有限元分析的前沿内容。本卷共20章,内容广泛,既强调有限元的数学力学原理,又结合工程实际背景。该书的版完成于1967年,到现在已出版第5版,历时40余年,成为有限元领域的经典著作,已有几代从事计算力学的学者从该书中受益。本书可作为高年级本科生和研究生的课程学习参考书,也是从事有限元研究的科研人员和工程技术人员的重要学习文献。
本书展示如何用Python程序将不同格式的数据处理和分析任务规模化和自动化。主要内容包括:Python基础知识介绍、CSV文件和Excel文件读写、数据库的操作、示例程序演示、图表的创建,等等。
本书是结合作者多年的教学经验,根据理工科“数学物理方程”教学大纲的要求及大气科学等专业的需要而编写的。本书以方法为主线,内容包括典型模型的定解问题建立、方程的分类与标准型、行波法、分离变量法、积分变换法和格林函数法等。在此基础上,介绍了研究偏微分方程定性理论的极值原理和能量方法,探讨了贝塞尔函数及勒让德函数的应用。本书叙述注重启发性、系统性与应用性,把较难的概念与尽量浅显的例子适当结合,将方法运用于各种应用驱动的偏微分方程模型中,并补充和扩展了相关知识到交叉应用领域。书中配有较多的典型例题和习题,可供读者阅读与练习。
《Apollonius of Perga Conics Book Ⅰ—Ⅲ》英译本和2002年出版的该书卷Ⅳ的英译本为底本合译而成。阿波罗尼奥斯在他的著作《阿波罗尼奥斯圆锥曲线论(卷1-4)》中,系统地阐述了圆锥曲面的定义,利用圆锥曲面生成圆锥曲线的方法与构成,而且还对圆锥曲线的性质进行了深入的研究。
本书介绍了目前在国内外最常用、的几种优化试验设计方法与数据分析的基本原理及其在化学、材料、机械、电子、质量管理等众多领域中的应用。内容包括正交试验法、优选法基础、因子设计法、一元和回归分析方法、正交多项式回归、均匀设计法、单纯形优化法、三次设计、稳定性设计、响应曲面试验设计及应用分析软件在数据分析中的应用等。着重介绍方法的原理、应用范围、优缺点以及如何将这些方法应用到科研和生产实际中,如何运用优化试验设计方法设计解决科研和生产实际问题的试验方案、如何设置试验参数,如何分析试验数据、如何估计试验误差、如何对试验的结果进行评价。