本书基于麻省理工学院开设的概率论入门课程编写,内容全面,例题和习题丰富,结构层次性强,能够满足不同读者的需求。书中介绍了概率模型、离散随机变量和连续随机变量、多元随机变量以及极限理论等概率论基础知识,还介绍了矩母函数、条件概率的现代定义、独立随机变量的和、 小二乘估计等 内容。
《常微分方程基础(英文版原书第5版)/时代教育国外高校教材精选》介绍了一阶常微分方程、高阶线性方程、幂级数法、Laplace变换法、线性微分方程组、数值方法、非线性方程和现象等常微分方程知识。
本书是结合作者多年的教学经验,根据理工科“数学物理方程”教学大纲的要求及大气科学等专业的需要而编写的。本书以方法为主线,内容包括典型模型的定解问题建立、方程的分类与标准型、行波法、分离变量法、积分变换法和格林函数法等。在此基础上,介绍了研究偏微分方程定性理论的极值原理和能量方法,探讨了贝塞尔函数及勒让德函数的应用。本书叙述注重启发性、系统性与应用性,把较难的概念与尽量浅显的例子适当结合,将方法运用于各种应用驱动的偏微分方程模型中,并补充和扩展了相关知识到交叉应用领域。书中配有较多的典型例题和习题,可供读者阅读与练习。
本书是一部概述世界各个国家和地区情况的中型综合性工具书。本书较全面、系统地展示了世界225个国家和地区的自然和社会,历史和现状,政治和经济,科学和技术,文化和宗教,民族和民俗,语言和文字,城市和旅游等诸方面情况。它以翔实的资料,可靠的数据,生动的论述和新的信息及时地反映了世界各个国家和地区的发展变化。
黎曼曲面及其模空间的概念由黎曼分别在其博士毕业论文和一篇的文章中定义。由于与数学和物理的许多学科联系广泛,黎曼曲面及其模空间得到了深入的研究,并将继续吸引人们的关注。近期热带曲线的研究迅速崛起。热带代数曲线是经典复数域上代数曲线以及黎曼曲面在热带半环上的一种模拟。 《黎曼曲面和热带曲线的模空间导引(英文版)》深入浅出地介绍了以上几个重要数学分支,并且重点强调如代数几何、复几何、双曲几何、拓扑、几何群理论和数学物理等不同学科之间的关联。季理真是美国密歇根大学教授,研究兴趣涉及几何、拓扑和分析领域,以及这些领域之间的联系,喜欢阅读和写作,曾获得Sloan研究奖。 Eduard Looijenga是世界代数几何学家之一,荷兰皇家艺术和科学院院士,现任教于清华大学。
《三角形的六心及其应用》共分6章,包括三角形六心的概念和性质,三角形六心的坐标表示、向量形式及应用,三角形六心问的距离,圆内接四边形中三角形的六心性质及应用,三角形六心性质的综合应用等内容,每章节后配有习题,书后附有习题参考答案。 《三角形的六心及其应用》适合于初、学生,初、数学竞赛选手及教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”及省级骨干教师培训班参考使用。
《西南岩溶石山区地下水资源调查评价与开发利用模式》系统梳理了西南岩溶石山区 2003 年以来地下水资源调查评价和开发利用示范成果,揭示了岩溶水文地质特性和地下水资源形成机制,提出了地下水资源调查评价技术方法体系,建立了堵洞成库、建柜蓄水、抽水调节和束流壅水 4 种岩溶地下水资源开发利用模式,为脱贫攻坚和生态文明建设提供了技术支撑。