本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
本书结合国外有关讨价还价和合作博弈理论的近期研究成果以及作者的读书笔记,为我们系统地介绍了合作博弈理论体系,比较完整地论述了合作博弈的相关主题,其中包括两人讨价还价理论以及近十几年正在国外引起注意的模糊合作博弈和多选择合作博弈,这些理论对于考虑绩效水平的财富分配和制定有效的法规制度等有着重要的指导意义。本书在注重合作博弈逻辑性的同时,以生活中的鲜活案例对合作博弈内容进行了讲解,能够很好地帮助大学师生学习和研究合作博弈理论,是一本适合财经类研究生(尤其是博士生)使用的教材。
《应用运筹学》系统地介绍了运筹学的主要内容,包括线性规划、运输问题、整数规划、目标规划、图论和项目管理。 《应用运筹学》尽量避免复杂的理论,力图通俗易懂、简明扼要地讲解运筹学的基本原理及其方法,以各种实际问题引出运筹学各分支的基本概念、模型和方法,并将教学内容重心放在实际问题的转化和建模上,将繁琐的计算交给Lingo软件解决。 《应用运筹学》便于读者自学和巩固提高,每章后面附有习题。 《应用运筹学》可作为应用型本科经济类、管理类各专业本科生和研究生教材,也可作为各类工程技术人员、管理人员参考用书。
本书是与山东大学刁在筠等编写的 十二五 普通高等教育本科*规划教材《运筹学》(第四版)配合使用的辅导书,全书共分9章,除运筹学简介之外,其余每章包含四部分内容:(1)学习要求:给出本章应该掌握的基本知识点;(2)内容要点:先以图表形式列出本章主要内容框架,然后简要列出本章基本概念、基本理论和主要算法;(3)习题解答:对教材中的课后习题给出详细的解答;(4)典型案例分析:紧扣教材主要内容,精选各类习题并给出详细解答,同时适当选择教材内容的拓展例题,帮助读者加深对知识点的理解和灵活运用。本书可作为数学类、经济管理类、系统工程等专业学生学习运筹学的参考书,也可供硕士研究生考试复习之用。
本书系统和深入介绍非线性优化的主要计算方法和相关理论,主要内容包括:一维优化方法、梯度法和共轭梯度法、拟牛顿法、直接方法、二次规划、罚函数法、可行方向法、逐步二次规划法、信赖域法、内点法、滤子方法等。
孙志忠编著的《计算方法与实习学习指导与习题解析(第2版)》是全国优秀畅销书《计算方法与实习》一书的全部习题解答,涉及误差分析、方程求根、线性方程组数值解法、插值法、曲线拟合、数值积分与数值微分、常微分方程数值解法和矩阵特征值及特征向量的计算。书末附一份模拟试卷及其参考答案。 《计算方法与实习学习指导与习题解析(第2版)》可作为理工科大学生学习计算方法课程的参考书。
线性锥优化是线性规划的延伸,也是非线性规划,尤其是二次规划的一种新型研究工具,其理论性强,应用面广,值得深入研究。本书系统地介绍了线性锥优化的相关理论、模型和计算方法,主要内容包括:线性锥优化简介、基础知识、**性条件与对偶、可计算线性锥优化、二次函数锥规划、线性锥优化近似算法、应用案例和内点算法软件介绍等。《BR》 本书不仅包含了线性规划、二阶锥规划和半定规划等基本模型,还引进二次函数锥规划来探讨更一般化的线性锥优化模型。同时,在共辄对偶理论的基础上,系统地建立了线性锥优化的对偶模型,分析了原始与对偶模型之间的强对偶性质。本书的主要内容来源于我们研究小组近些年工作总结,一些研究结果还非常初始,仍然具有较新的研究价值和可能的扩展空间。
《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》是以美国大学生数学建模竞赛(MCM/ICM)赛题为主要研究对象,结合竞赛特等奖的优秀论文,对相关的问题做深入细致的解析与研究。《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》针对2003年及2004年MCM/ICM竞赛的6个题目:特技演员的安全问题、伽马刀治疗方案问题、航空行李扫描策略问题、指纹的性问题、快速通过系统设计问题以及校园网安全措施的优化配置问题进行了解析与研究。 《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》内容新颖、实用性强,可作为指导学生参加美国大学生数学建模竞赛的主讲教材,也可作为本科生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同时还可供研究相关问题的
哈姆迪A塔哈撰写的《运筹学导论》是关于运筹学的非常优秀的基础教材,自初版以来,经过多次修订与扩充,如今已推出第9版。第9版的主要特色在于:(1)重视运筹学基本知识的讲解,但对一些问题也作了较深入的分析,以满足不同读者的需要。(2)突出实用性。各章通过实践问题的求解来导出运筹问题的数学模型,这既凸显出该运筹问题的实际背景,也便于读者学习如何进行建模。(3)计算方法与软件相结合。全书使用教学辅助软件TORA、软件包Excel及AMPL等,读者可以利用这些软件工具对所学的模型和计算方法进行计算和检验。 由于原书篇幅宏大,英文版分成基础篇和提高篇两册出版,每册可用作一个学期的教材。