本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
正如宾默尔在这本《博弈论教程》中用大量例子和应用充分展示的那样,博弈论有利于弄懂人类各种各样的互动关系。这本新书是替代宾默尔前一本博弈论教材《娱乐和博弈》(Fun and Games)的。这本充满乐趣的博弈论入门教材适合高年级本科生或低年级研究生,着重回答这样三个问题:什么是博弈论?博弈论如何应用?博弈论为什么是正确的?《博弈论教程》也是认真讨论这三个问题,又不过分数学化的一本书。《博弈论教程》的主题包括议价理论、不竞争、合作博弈、贝叶斯决策理论、不完全信息博弈、机制设计,以及拍卖理论。《博弈论教程》适合许多专业的学生,包括经济学、数学和哲学专业。为了方便其他专业学生的学习,在必要的地方会对所有三个学科的标准专题作一些回顾。《博弈论教程》的一个重要特征是配有大量习题,而且答案是可得的。
本书介绍了线性规划、对偶理论、整数规划、目标规划、运输与指派问题、网络模型、网络计划、动态规划、排队论、存储论、决策论、多属性决策与博弈论等运筹学主要分支的基本理论、基本概念和计算方法,用较多的例题介
本书详细探讨了现代非线性系统的分析与设计技术,并提供了分析非线性系统的工具。主要内容包括相平面分析、描述函数分析、反馈线性化、滑动控制以及自适应控制等。另外,还提供了大量例题与习题,便于教学。本书结构安排合理,实践性强,适合作为高等院校理工科专业的,同时对非线性控制初学者以及相关工程技术人员来说也是一本很好的参考书。
《博弈论简明教程》章的绪论,开门见山地介绍了四个博弈论的典型例子,以期引起读者的兴趣,并由此引入博弈的五个要素:参与者、信息、行动与战略、收益以及结局(均衡)。绪论还简要阐述了博弈论发展的大致脉络,以及博弈论与经济学相互渗透、相互促进的进程。基于个人理性假设的传统非合作博弈是本教程的主要内容,该部分占全书五分之四的篇幅,考虑到近数十年发展迅速的基于团体理性假设的合作博弈,以及不要求参与者完全理性假设的演化博弈的地位与作用的显现,为了让读者能及时接触到博弈论的发展前沿,本教程安排第6章介绍合作博弈,第7章介绍演化博弈,供读者选读。
本书是从西北工业大学近年来在国际和全国数学建模竞赛中精选出的近20篇获得一等奖的论文加工整理而成的.所选择的论文都是最有代表性的,每篇论文都按照竞赛论文的写作要求,包含论文的摘要、问题的重述、问题的分析、模型的假设与符号说明、模型的建立与求解、模型的分析与检验、模型的评价与改进等内容.论文几乎完整地保持了参赛论文的原貌.同时每篇论文后给出了比较细致的点评.书后附录中提供了数学建模竞赛部分赛题. 本书可供参加全国数学模型竞赛和国际数学建模竞赛的大学生学习和阅读,也可以作为数学建模课堂教学和竞赛培训的案例教学,也可供从事相关学科教学和研究工作的科技人员参考.
数学是研究现实世界数量关系和空间形式的科学,是一种思维方式,在它的发展历史长河中,一直与各种应用问题紧密相关。 本书是为各类本专科院校开展数学建模活动和参加全国大学生数学建模竞赛的指导培训而编著的,是笔者在使用多年的指导培训讲义基础上结合的竞赛题修订而成的。内容包括:数学建模概述、初等数学建模方法示例、预测类数学模型、评价类数学模型、优化类数学模型、概率类数学模型、多元统计分析模型、方程类数学模型、图与网络模型以及如何准备全国大学生数学建模竞赛。同时它对以往在全国大学生数学建模竞赛以及其他数学建模竞赛中出现过
《离散与连续空间中的搜索理论》讨论离散和连续空间中关于静止和运动目标的搜索策略,分析了目标的概率分布函数已知和未知的各种情况,重点介绍了搜索理论的基础知识和发展。 《离散与连续空间中的搜索理论》共分6章。章介绍搜索理论的产生、发展过程及研究现状。第2章讨论针对静止目标的搜索策略及数学模型。第3章讨论分布函数未知情况下的搜索策略。第4章讨论针对运动目标的搜索策略,并尝试将搜索问题与控制理论结合起来进行讨论。第5章介绍系统的控制理论的一些基本原理以及与搜索理论的交叉点。第6章给出了搜索理论在经济学和无线网络管理领域的一些应用。最后对全书做了一个总结并给出关于进一步研究的一些建议。《离散与连续空间中的搜索理论》包括了许多实例和算法,以及一个示范性的仿真软件包。
《军事科学院硕士研究生系列教材:简明军事运筹学教程(第2版)》选择军事运筹学基本概念与原理、军事运筹学常用方法、作战与战略运筹理论作为主要内容,既满足军事科学院军事运筹学专业硕士研究生教学需要,又达到了突出重点、有所取舍的目的。
《非对称作战数学建模与仿真分析》是在总结作者近年教学心得和科研成果的基础上写作的一部学术性较强的军事技术理论著作,其目的是为探究非对称作战活动规律、发展完善非对称作战理论、指导非对称作战运用提供支持。《非对称作战数学建模与仿真分析》共分10章。章和第2章主要论述非对称作战的基本概念和主要特征,作战基本要素非对称运用的表现形式以及作战的非对称运行机理;第3章~0章是《非对称作战数学建模与仿真分析》的核心内容,建立了综合评价模型、多目标规划模型、指数法模型、兰彻斯特方程模型、突变分析模型、基于多智能体的作战仿真模型、基于复杂网络和数据场理论的作战仿真模型,并进行了非对称作战仿真实验设计及典型应用分析。
本书从工程应用角度出发,以线性系统理论和控制为主线,介绍现代控制理论的基本方法。其中,线性系统理论部分主要阐述状态空间分析法和综合法的基本内容,包括动态系统的状态空间描述、动态系统的定量分析(状态方程的解)和定性分析(能控性、能观测性、李亚普诺夫稳定性)、动态系统的综合(状态反馈与状态观测器设计);控制部分在介绍解决问题3种基本方法(变分法、极小值原理、动态规划法)的基础上,阐述两类典型反馈系统的设计(线性二次型控制、时间控制)。本书在保证理论知识体系结构完整的前提下,融入MATLAB在线性系统理论和控制中的应用。
本书从一道高考试题谈起,详细地介绍了Banach压缩不动点定理的产生、证明方法、分类及其在解决一些数学问题中的应用,并且针对学生和专业学着,以不同的角度和深度介绍了不动点定理的分类与证明过程.
本书系统介绍了预测信息组合技术、预测方法组合技术、预测结果组合技术以及组合预测的基本理论,回答了为什么要进行组合预测、什么时候进行组合预测、怎样实现组合预测等具有重要实践意义的问题,是一部现代组合预测理论和方法的集大成之作。
《运筹学:理论、模型与Excel求解》既介绍了运筹学的基本理论、方法和模型,又探讨了它们在Excel电子表格中的建模和求解,还包括了大量来自经济管理实践的案例分析。全书共分10章,系统地介绍了线性规划及其单纯形算法、对偶理论与灵敏度分析、整数规划、目标规划、网络计划、决策分析以及博弈论的主要理论和方法,并通过实例介绍了运筹学基本模型在Excel电子表格中的建模和求解过程。本书致力于理论方法与计算机软件的有机结合,通过对大量案例的建模和分析,力求做到理论、方法阐述简单明了,软件操作方便可行,案例分析符合实际。每章都配有数量的习题以帮助读者熟练掌握运筹学的基本理论、方法和模型,并为进一步的深入学习奠定基础。本书既可作为高等院校经济和管理类专业的本科生、工商管理硕士(MBA)的教材,也可作为经济和管理类其
《无知的博弈:有限信息下的生存智慧》全书用通俗易懂的语言,结合来自经济、政治、历史和日常生活中的大量例子,生动地展示了在不完全信息局势下个人如何做出的决策。包括如何在不确定环境中决策(与上帝博弈),如何在博弈中操纵信息(信号传递、信号干扰、信息隐藏),如何设计机制去探测对手的类型(信息甄别)。《无知的博弈:有限信息下的生存智慧》充分展现了有限信息下的博弈策略和智慧较量,并让我们更为深刻地洞察到社会生活某些表象背后的真相。