本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
本书结合国外有关讨价还价和合作博弈理论的近期研究成果以及作者的读书笔记,为我们系统地介绍了合作博弈理论体系,比较完整地论述了合作博弈的相关主题,其中包括两人讨价还价理论以及近十几年正在国外引起注意的模糊合作博弈和多选择合作博弈,这些理论对于考虑绩效水平的财富分配和制定有效的法规制度等有着重要的指导意义。本书在注重合作博弈逻辑性的同时,以生活中的鲜活案例对合作博弈内容进行了讲解,能够很好地帮助大学师生学习和研究合作博弈理论,是一本适合财经类研究生(尤其是博士生)使用的教材。
《应用运筹学》系统地介绍了运筹学的主要内容,包括线性规划、运输问题、整数规划、目标规划、图论和项目管理。 《应用运筹学》尽量避免复杂的理论,力图通俗易懂、简明扼要地讲解运筹学的基本原理及其方法,以各种实际问题引出运筹学各分支的基本概念、模型和方法,并将教学内容重心放在实际问题的转化和建模上,将繁琐的计算交给Lingo软件解决。 《应用运筹学》便于读者自学和巩固提高,每章后面附有习题。 《应用运筹学》可作为应用型本科经济类、管理类各专业本科生和研究生教材,也可作为各类工程技术人员、管理人员参考用书。
本书是与山东大学刁在筠等编写的 十二五 普通高等教育本科*规划教材《运筹学》(第四版)配合使用的辅导书,全书共分9章,除运筹学简介之外,其余每章包含四部分内容:(1)学习要求:给出本章应该掌握的基本知识点;(2)内容要点:先以图表形式列出本章主要内容框架,然后简要列出本章基本概念、基本理论和主要算法;(3)习题解答:对教材中的课后习题给出详细的解答;(4)典型案例分析:紧扣教材主要内容,精选各类习题并给出详细解答,同时适当选择教材内容的拓展例题,帮助读者加深对知识点的理解和灵活运用。本书可作为数学类、经济管理类、系统工程等专业学生学习运筹学的参考书,也可供硕士研究生考试复习之用。
孙志忠编著的《计算方法与实习学习指导与习题解析(第2版)》是全国优秀畅销书《计算方法与实习》一书的全部习题解答,涉及误差分析、方程求根、线性方程组数值解法、插值法、曲线拟合、数值积分与数值微分、常微分方程数值解法和矩阵特征值及特征向量的计算。书末附一份模拟试卷及其参考答案。 《计算方法与实习学习指导与习题解析(第2版)》可作为理工科大学生学习计算方法课程的参考书。
今天,一方面,人类的资源越来越紧张,另外一方面,人类生存权利平等、生命价值高于一切等等,渐渐成为普遍价值。这样,如何在竞争的世界中合作共赢越来越被人们所重视。 然而,合作不仅仅是一个态度问题,更重要是方法问题。博弈论是关于理性人竞争与合作的理论,然而博弈论没有给出解决博弈困境以及如何合作的方法。本书利用博弈理论,分析如何在竞争性博弈中做到合作,以及在非竞争性的博弈即联盟博弈中,如何实现合作。本书利用大量具体案例深入浅出地阐述博弈中参与人“如何避免更糟”、“如何寻求更好”、“如何走出必然的困境”、“如何共存”等等合作的具体方略。 本书可看做是共赢的行动指南或行动方法论。
《数学建模》根据作者陈光亭和裘哲勇多年的教学经验编写而成,主要内容包括数学规划与组合优化建模、方程建模、方法建模、模糊和灰色系统建模,以及常用数学软件与算法等,涵盖了数学建模常用的方法和工具。每部分内容安排上不追求知识的系统性和完整性,更多地以大量建模问题实例和涉及面较广的背景素材引出需要的方法,并在此基础上简要介绍相关基础知识和基本方法的使用。各部分内容之间具有相对独立性,有利于教师在教学中根据不同的需求以及教学时数的多少进行取舍。 《数学建模》可作为一般院校大学生 数学建模 课程的教材,也可作为指导大学生数学建模竞赛的培训参考书,以及供相关科技工作者参考使用。