作者根据多年数学建模竞赛辅导工作的经验编写本书,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏小二乘回归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。本书所选案例具有代表性,注重从不同侧面反映数学思想在实际问题中的灵活应用,既注重算法原理的通俗性,也注重算法应用的实现性,克服了很多读者看懂算法却解决不了实际问题的困难。本书所有例题均配有Matlab或Lingo源程序,程序设计简单精炼,思路清晰,注释详尽,有利于没有编程基础的读者快速入门。同时很多程序隐含了作者多年的编程经验和技巧,为有一定编程基础的读者深入学习Matlab、Lingo等编程软件提供了便捷之路。本书配有丰富的课件资源,包括教师授课PPT课件、主教材的程序和数据、
作者根据多年数学建模竞赛辅导工作的经验编写本书,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏最小二乘回归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。 本书所选案例具有代表性,注重从不同侧面反映数学思想在实际问题中的灵活应用,既注重算法原理的通俗性,也注重算法应用的实现性,克服了很多读者看懂算法却解决不了实际问题的困难。 本书所有例题均配有Matlab或Lingo源程序,程序设计简单精炼,思路清晰,注释详尽,有利于没有编程基础的读者快速入门。同时很多程序隐含了作者多年的编程经验和技巧,为有一定编程基础的读者深入学习Matlab、Lingo等编程软件提供了便捷之路。 本书配有丰富的课件资源,包括教师授课PPT课件、主教材的程序
生物数学模型在近年得到越来越广泛的应用。本书系统完整地介绍了生物数学模型的统计学基础,从一元线性模型开始,逐步引入联立方程组、混合(随机效应)模型、度量误差模型以及向非线性模型的推广,并讨论了这些统计模型之间的关系及它们对某些与森林有关的数学模型的应用和局限。这些总结与讨论,不仅有助于理解应用统计方法的“生物数学模型”和“统计模型”的关系和差异,也为统计学在其他领域中的应用提供了借鉴。 相对第一版,本书做了不少重大调整,新增有关非线性混合效应模型内容,修订和完善了部分证明和例子等。 本书可作为高等院校农林和生物专业研究生教材,也可以作为数理统计和应用统计专业研究生教材和参考书,还可供相关专业的大学生、研究生、教师、科技人员和统计学工作者参考。 关键词:线性模型,似乎
本书提供了理解中级水平和高级水平所需要数学工具的基本框架,全书包括三部分内容:部分,矩阵代数和线性经济模型,包括矩阵代数、线性方程组、线性经济模型、二次型和正定矩阵;第二部分,多元函数和化,包括多元函数、化和化问题中的比较静态分析等内容;第三部分,动态分析,包括积分、微分方程、差分方程和动态化。 当代经济学发展更多地强调数学作为一种分析工具在经济推理和经济分析中的作用。要学好和掌握中级和高级水平的经济学必须掌握相应的数学工具。本书有三个特点:内容系统全面且篇幅适中;强调数学在经济学中的应用;便于自学。 本书尤其适合高等院校经济管理类专业的本科生、研究生和其他各专业学习经济学的读者使用。 为了更好地服务教学,本书译者专门编写了与本书相配套的电子教案,免费赠送教师。详情请看
本书是国外介绍有限元方法的经典入门教程,主要介绍有限元方法的基本理论知识、一般原理、各类实体模型的问题求解和实际工业应用。本书内容丰富新颖, 涵盖了简单的弹簧和杆、梁的弯曲、平面应力/应变、轴对称、等参公式、三维应力、板的弯曲、热传导和流体介质、多孔介质、液压网络、电网和静电学中的流体流动、热应力、与时间相关的应力和热传导等,并由此引出有限元分析的高级课题。此外,本书还在不同阶段引入了弹性基本理论、直接刚度法、伽辽金残余法、势能原理、虚功原理等,以建立分析所需要的方程。
本书首先对磁滞的数学模型及考虑磁滞数值计算方面的研究状况进行了综述,然后介绍了一些典型的标量及矢量Preisach磁滞模型,对这些数学模型中涉及的一些概念进行了详细的讨论,同时也对作者提出的非线性矢量磁滞模型及动态矢量磁滞模型作了介绍,在此基础上,提出了考虑磙滞效应时磁场的数值计算方法以及磁滞电机的数值计算方法,最后探讨了磁滞多值性的人工神经网络模拟方法。 本书可作为从事磁记录、电机及电器的磁场数值计算等领域的广大科研人员及在校研究生的参考书。
本书不同于传统的理工或者经管类的过程教科书。在系统介绍了现代精算学中的过程理论的基础上,本书将过程理论及其在金融保险中的应用有机地结合起来,深入研究出现于金融保险中的过程专题,系统揭示过程的理论与方法如何巧妙地应用于金融保险中。本书可作为综合大学经济类、金融类、保险类高年级本科生和研究生的教材或参考书,也可以供保险业精算人员和其他对金融工程、保险精算有兴趣的读者参考。
stochaLstic Calculus of Variations(or Malliavin Calculus)consists,in brief,in constructing and exploiting natural differentiable structures on abstract Drobability spaces;in other words,Stochastic Calculus of Variations proceeds from a merging of differential calculus and probability theory. As optimization under a random environment iS at the heart of mathemat’ical finance,and as differential calculus iS of paramount importance for the search of extrema,it is not surprising that Stochastic Calculus of Variations appears in mathematical finance.The putation of price sensitivities(orGreeksl obviously belongs to the realm of differential calculus. Nevertheless,Stochastic Calculus of Variations Was introduced relatively late in the mathematical finance literature:first in 1991 with the Ocone-Karatzas hedging formula,and soon after that,many other applications alDeared in various other branches of mathematical finance;in 1999 a new irapetus came from the works of P.L.Li