计算机代数是研究符号计算的算法设计、理论分析和计算机实现的学科。本书介绍计算机代数的基本知识、算法及其理论依据。主要内容包括数据的表示与基本运算、结式与子结式、整系数多项式的模算法、特征列方法、Grobner基方法、实系数多项式的根、实闭域上的量词消去以及形式积分等。本书侧重陈述经典方法,并采用通俗的语言解说算法的数学理论。
本书作为一部论述生物数学思想的专著,尝试将生物数学思想从其内部打通,以生物数学思想的起源与形成为主线,通过透析生物数学思想演变的内在逻辑,窥觅到它的产生和发展是环环相扣的有机的统一体。本书首先对生物数学的思想体系进行整体梳理。然后把握生物数学思想产生和发展过程中各个阶段的关键点;选择具有代表性的种群动态数学模型的产生和发展过程作为突破口,并详细介绍这类生物数学模型在产生和发展过程中所经历的15种形态;详尽分析生物数学四大分支的起源与形成过程;选择生物数学思想演变过程中的5位代表人物进行个案分析;细致探析生物数学的社会化过程;给出生物数学思想未来发展方向的三点展望。*后,叙述中国生物数学的开拓过程。
本书包含一百五十多道数学问题,这些问题主要与数学分析有关,还进一步扩展了 Bernoulli数、微分方程和度量空间的主题.书中同时给出了这些问题的解答,包括相关提示 和解题技巧,供读者理解与掌握.每一章都有一个要点总结,其中还有一些基本定义和结论, 包含了许多对数学分析中一些重要数学结果的简要历史评论以及参考文献。 本书可作为本科生在微积分和线性代数课程期间或之后的习题集,对学习解析数论也 具有一定的指导意义.
本书系统地介绍集合论、近世代数、点集拓扑、泛函分析、Fourier分析、分布理论、微分几何等近代应用数学的基本内容,及其在自然科学领域中的应用。书中强调对近代数学基本概念的理解、对重要论证方法的思路分析,以培养读者掌握并应用近代应用数学工具解决本专业的实际问题。20世纪初期至今的百余年中,数学科学与自然科学诸领域相辅相成,互相促进,彼此渗透,共同发展,使得数学科学成为当今各个科学领域中不可或缺的重要工具。因此介绍近代应用数学基本内容的教材已成当务之急,本书就起了这样的重要作用。
《数学奥林匹克在中国》介绍了从1986年至2013年的国际数学奥林匹克竞赛在中国的发展情况,并着重介绍了从1986年以来历届国际数学奥林匹克竞赛的试题及解答技巧,后介绍了历届中国数学奥林匹克竞赛试题。 《数学奥林匹克在中国》适合准备参加高中数学奥林匹克竞赛的学生及辅导教师和广大数学爱好者参考阅读。
本书介绍和分析了一些**控制中的数学方法,包含作者近年来的研究成果及其应用。主要内容包括:线性时变系统二次**控制的Riccati矩阵微分方程的迭代求解、稳定系统**控制问题的迭代逼近、线性随机系统二次**控制的Riccati矩阵微分方程的选代分析、线性随机系统H∞控制问题的Riccati矩阵方程的迭代方法、约束**控制问题的倒向微分方程、约束线性系统二次**控制问题的解析解、奇异**控制问题的Gurman摄动方法、**控制问题的Krotov延拓方法、局部时间**控制和仿射解析系统**控制问题的Lie级数方法。
本书面向地理学问题,讲述了常用数学方法的基本原理和应用实例。全书分为四篇,共21 章。第一篇是地理数学方法导论,讲述基本概念和知识,属于基础内容;第二篇讲述回归分析与相关分析,包括线性回归、非线性回归、Logistic 回归、虚拟变量回归以及基于回归分析的模型选择等方法;第三篇讲述多元统计分析,包括主成分分析、因子分析和聚类分析等方法;第四篇讲述时空过程分析,包括时(空)间序列分析、Markov 链、R/S 分析等方法。本书作为北京大学研究生地理数学方法教材试用多年,其特点是简明、详细,便于自学者使用。在讲解原理的过程中穿插了大量实例,读者可以通过实例解析了解有关方法的应用要领和分析思路。
近年来,进化算法的研究进入了快速发展阶段,越来越多的研究开发人员开始从事进化算法的设计与实现。进化算法能够比较地解决常规数学无法求解的不可微、多目标的数学优化问题,在工程实践中也得到了较多广泛的应用。本书全面阐述了进化算法在外研究现状和发展,讨论了多种进化算法的概念和原理,结合作者及团队近些年来在配电网的研究成果与应用实践,论述了进化算法在电力系统中的计算与优化方法,力求使读者通过阅读本书获得一条应用进化算法到实际电力工业应用的捷径,而这一点是目前多种书籍所没有涉及的。