本书旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将有机会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。本书对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为参加国内外数学建模竞赛的指导用书。
本书在不损数学本身的严密性和精确性的前提下,打破了经济学和数学分别教学的常规,将经济学与数学有机结合在一起,不但清晰地表达了相关的数学主题,而且比较完美地将这些主题与经济问题相结合,其侧重点在于教会学生利用数学知识解决相关的经济问题。本书第二版也由我社出版,共发行6000册。
本书包含一百五十多道数学问题,这些问题主要与数学分析有关,还进一步扩展了 Bernoulli数、微分方程和度量空间的主题.书中同时给出了这些问题的解答,包括相关提示 和解题技巧,供读者理解与掌握.每一章都有一个要点总结,其中还有一些基本定义和结论, 包含了许多对数学分析中一些重要数学结果的简要历史评论以及参考文献。 本书可作为本科生在微积分和线性代数课程期间或之后的习题集,对学习解析数论也 具有一定的指导意义.
数据包络分析(data envelopment analysis,DEA)方法作为现代综合评价中较为常用的评价理论引起了学者、企业乃至政府的广泛关注;历经四十多年的发展目前已经形成了理论体系较为完善且应用范围非常广泛的具有多投入多产出问题相对有效性的评价方法。 本专著的各章具体安排如下:第1章对数据的搜集与标准化处理问题进行了介绍;第2章和第3章对数据包络分析方法中的CCR模型、BCC模型及其MATLAB求解算法展开了介绍;第4章对综合数据包络分析模型及其相关算法展开了介绍;第5章对广义数据包络分析方法及其相关算法展开了介绍;第6章对超效率、交叉效率及非径向数据包络分析模型及其MATLAB算法进行了介绍;第7章对网络数据包络分析模型及Malmquist指数展开了介绍;第8章对基于偏序集理论的数据包络分析方法及其MATLAB算法进行了介绍;第9章对基于博弈理论的数据包
《数学奥林匹克在中国》介绍了从1986年至2013年的国际数学奥林匹克竞赛在中国的发展情况,并着重介绍了从1986年以来历届国际数学奥林匹克竞赛的试题及解答技巧,后介绍了历届中国数学奥林匹克竞赛试题。 《数学奥林匹克在中国》适合准备参加高中数学奥林匹克竞赛的学生及辅导教师和广大数学爱好者参考阅读。
无
本书系统介绍传染病动力学的数学建模思想、典型研究方法和主要研究成果。主要内容涉及具有时滞、接种免疫、疾病复发、类年龄结构、空间扩散和非线性发生率的传染病动力学模型以及具有胞内时滞、CTL免疫反应、抗体免疫反应、游离病毒扩散、细胞感染年龄和非线性感染率的宿主体内HIV(HBV)感染动力学模型的建立和研究,也特别介绍有关艾滋病、乙肝和结核病等重要传染病在国内外的最新研究结果。本书重点介绍传染病动力学的数学建模方法、理论分析和数值模拟方法,内容丰富、方法实用,反映了当前传染病动力学在国内外的最新研究动态和作者的最新研究成果。通过阅读本书,既能使一般读者尽快地了解和掌握传染病动力学的建模思想和理论分析方法,又能将具有一定基础的读者尽快带到相关研究领域的前沿。
本书包括空间坐标和向量矩阵、数列、微分及其应用、积分及其应用、平面几何公理的构造等内容,且附有700道习题及详细解答。 本书取材丰富、命题新颖、结构紧凑,对中学生系统复习并灵活运用所学知识,加强基本功训练,增强解题能力有较大的帮助。 本书适合中学生及数学爱好者参阅。
《*金融数学引论》是*金融数学入门及引论教材。首先,基于离散时间金融模型描述了*过程中一些基本概念:结合单时段金融模型、多时段二项式树模型,介绍*变量的条件数学期望及离散参数鞅等。由此,介绍资产定价基本定理及离散框架下期权的定价公式。其次,基于连续时间金融模型,《*金融数学引论》较系统介绍*分析中的一些基本内容。例如:介绍了连续时间鞅、布朗运动、伊藤积分、伊藤公式、*微分方程及其解的存在性、Dynkin公式、Feymann-Kac定理、Girsanov定理及鞅表示定理等。介绍了金融市场可达性和完备性的*刻画。在此基础上,介绍基本Black-Scholes模型的基本期权、奇异期权定价公式;进一步,介绍广义Black-Scholes模型的复杂欧式期权定价公式。在利用*停时介绍了美式期权定价之后,《*金融数学引论》后介绍精算学初步——破产论及其与金融数学的联系。
《动力系统反控制方法及其应用》详细论述了离散时间系统、连续时间系统和切换系统反控制(即混沌化)的研究方法与应用及其电路设计与实现,共20章。~9章主要介绍离散时间系统反控制,包括数学预备知识与混沌的基本概念,离散时间系统反控制的Chen-Lai算法及其电路实现,离散时间系统反控制的Wang-Chen算法,单峰和多峰映射,离散正弦多峰映射,线性取模运算多峰映射,混沌控制与同步,离散时间系统的单变量反控制、同步及其在混沌序列密码中的应用,高维广义超混沌猫映射及其在分组图像加密中的应用等。0~19章主要介绍连续时间系统与切换系统的反控制,包括连续时间系统与切换系统反控制方法概述,连续时间线性系统的反控制,连续时间非线性系统的反控制,三维切换系统的反控制,四维切换系统的反控制,具有指标1鞍焦平衡点和相同特征平面的
本书以系统分析中的建模理论与方法为研究对象,在分析离散事件系统、系统动力学以及多智能体建模基本理论与方法基础上,阐述多方法建模的基本原理和方法。主要内容包括:综述系统、模型、建模和仿真的基本概念、基本理论以及基本方法;在论述离散事件系统、系统动力学以及多智能体基本建模理论基础上,分析比较了三种建模方法的差异性,并对离散事件系统、系统动力学以及多智能体建模过程中基本方法、步骤和流程进行阐述;以离散事件系统建模、系统动力学建模以及多智能体建模为基础,阐述多方法建模的基本原理和基本实现方法,同时对三种建模方法实现过程进行了比较,结合实例分别展示多智能体与系统动力学联合建模、多智能体、系统动力学与离散事件系统联合建模的具体实现过程。
《经济学中的数学》主要介绍高等数学在经济学中的应用。主要包括八个部分。部分为导论(第1-5章),主要介绍一元微积分及其应用。第二部分(第6-11章)介绍线性代数及其在经济学中的应用,包括线性方程组及其解法、矩阵代数、行列式等内容。第三部分(第12-15章)介绍多元微分并重点应用于比较静态分析。第四部分(第16-22章)主要是*化方面的内容,包括无约束*化和约束*化等问题。第五部分(第23-25章)介绍特征值与动态学,引入差分方程解决动态经济学的有关问题。第六部分(第26-28章)介绍高等线性代数。第七部分(第29-30章)的高等数学分析是对前面经济学数学方法的进一步深化。第八部分重点介绍数学本身的方法论问题。在《经济学中的数学》的后,我们提供了部分习题的答案。
本书是一本商务与经济数学的基础教材。它主要面向经济学、工商管理专业的低年级本科生。本书的语言浅显易懂,内容深入浅出,栏目设置灵活多样,书中含有大量的例题。这使得本书不像传统的数学教科书那样枯燥,对读者更具吸引力,从而部分减轻了一些读者对学习数学的恐惧心理。 本书也可作为一本自学教材。本书涉猎广泛,从基础的数学知识,如百分比和线性方程,到较为复杂的数学问题,多如变量函数的有约束优化问题,均有所涉及。因此,本书既可以用于低层次的数量方法课程,也可用于高层次的数量方法课程。
数学金融已经成长为一个庞大的分支,故而需要大量的数学工具作为支持。本书同时将金融方法和相关的数学工具以数学的严谨和数学家易于理解的方式加以表达。书中将金融概念如套利机会、容许策略、索取权、期权定价和拖欠风险和数学理论,如布朗运动、扩散过程和Levy过程等交叉讲述。前半部分讲述了连续路径过程,后半部分进而讲述了不连续过程。扩充参数文献包括大量的参考资料和作者索引,使得读者能够很快找到书中引用资料的来源,这对初学者和相关科研实践人员都是弥足珍贵的。
全书内容包括:套利定理、风险中性概率、用于金融领域的微积分、鞅、偏微分方程、Girsanov定理和FeymanKac公式,开头介绍了金融衍生工具知识。本书为略有金融知识背景或金融从业人员提供金融衍生工具定价所涉及的数学知识和数学方法,对数学原理和方法的介绍简明易懂,所举例子丰富。
本书旨在向读者介绍经济计量理论和技术,力求通过大量的实例、翔实的解释和丰富的习题帮助学生理解经济计量技术。根据学生和教师的建议,第4版的框架进行了重新调整,增加了许多新例子,并恰如其分地给出了各种软件的计算机输出结果。 本书重点面向经济学和管理类专业本科生以及MBA学员,也适用于涉及经济计量分析,尤其是回归分析的其他社会科学和行为科学专业的学生。
时滞神经网络是高度非线性的动力学系统,具有丰富的动态行为,在模式识别、信号处理、联想记忆、保密通信和全局优化等领域得到了广泛应用.《BR》本书主要介绍时滞神经网络的基本理论知识,平衡状态的局部稳定性与分支分析、全局鲁棒稳定性,周期解的存在性与稳定性,以及具有不同时间尺度的竞争神经网络、具有leakage时滞的神经网络和广义反应扩散神经网络的同步控制.本书内容丰富、方法实用,理论分析与数值模拟相结合,写作时注重系统性与简洁性,由浅入深,使读者能够尽快了解和掌握时滞神经网络稳定性和同步控制的研究方法及前沿动态.
三支决策是一种基于人类认知过程的决策方法。《三支决策与粒计算》以决策粗糙集为研究背景,利用粗糙集理论中的正域、边界域和负域,提出了一种三支决策理论:从正域里获取的正规则用来接受某事物,从负域里获取的负规则用来拒绝某事物,落在边界域上的规则表示延迟决策。这种将论域分为三部分的决策方式,很好地描述了人类在解决实际决策问题时的思维模式,为粗糙集方法应用于数据驱动的决策分类问题提供了可靠的理论依据。粒计算是近年来新兴的一个研究领域,是信息处理的一种新的概念和计算范式,主要用于描述和处理不确定的、模糊的、不完整的和海量的信息,以及提供一种基于粒和粒间关系的问题求解方法。《三支决策与粒计算》主要介绍三支决策与粒计算的理论、模型和方法,以及其在工程、管理等领域中的应用成果,并力图展现国内